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Abstract
We consider Multiway Cut, a basic graph partitioning
problem in which the goal is to find the minimum weight
collection of edges disconnecting a given set of special
vertices called terminals. Multiway Cut admits a well
known simplex embedding relaxation, where rounding this
embedding is equivalent to partitioning the simplex. Current
best known solutions to the problem are comprised of a
mix of several different ingredients, resulting in intricate
algorithms. Moreover, the best of these algorithms is too
complex to fully analyze analytically and its approximation
factor was verified using a computer. We propose a new
approach to simplex partitioning and the Multiway Cut
problem based on general transformations of the simplex
that allow dependencies between the different variables. Our
approach admits much simpler algorithms, and in addition
yields an approximation guarantee for the Multiway Cut
problem that (roughly) matches the current best computer
verified approximation factor.
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1 Introduction
The Multiway Cut problem in undirected graphs is a
prime example for the success of the geometric embedding
approach, a prevalent tool in the design of approximation
algorithms for many NP-hard graph cut problems [3, 4, 7, 12,
20, 26, 27]. In this problem we are given an edge weighted
undirected graph G = (V,E), w : E → R+, and a set
T = {t1, t2, . . . , tk} ⊆ V of k terminals. The goal is to
find a minimum weight subset of edges X ⊆ E such that all
terminals are disconnected in (V,E \ X). When k = 2 the
Multiway Cut problem is simply the minimum {s, t}-cut
problem in undirected graphs, whereas for k = 3 it is already
known to be NP-hard [11].

The first approximation algorithm for the Multiway
Cut problem was given by Dalhaus et al. [11]. It is a simple
combinatorial heuristic: for each terminal ti, compute a
minimum cut separating it from all other terminals. Dalhaus
et al. [11] showed that the union of the k − 1 cheapest cuts
(of the k cuts computed) is a 2(1 − 1/k)-approximation.
Călinescu et al. [7] suggested a geometric relaxation for the
Multiway Cut problem. In this relaxation each vertex
u ∈ V is embedded into the k-dimensional simplex ∆k =
{x ∈ Rk : x ≥ 0,

∑
i xi = 1}, while the terminals

are mapped bijectively to the vertices of ∆k. Călinescu et
al. [7] observed that any rounding of this relaxation is in
fact a partitioning of the simplex into k parts, one for each
terminal (or equivalently a vertex of ∆k). They presented a
partitioning algorithm achieving an approximation guarantee
of 3/2 − 1/k. Building upon this result, Karger et al. [21]
managed to obtain an improved guarantee of 1.3438 − εk,
where εk is a decreasing function of k that tends to 0 as k
increases.

The first improvement over the work of Karger et al.
[21] was given by Buchbinder et al. [5]. They presented a
rounding framework that was based on two ingredients: the
exponential clocks algorithm and the Călinescu et al. algo-
rithm [7] (which we will denote from this point onwards as
the CKR algorithm). It is worth noting that [5] proved that
one can equivalently use the algorithm of Kleinberg and Tar-
dos for Uniform Metric Labeling [25] instead the
exponential clocks algorithm. [5] provided a simple 4/3-
approximation for Multiway Cut via the above approach.
Additionally, they showed that within their framework of



mixing the above two ingredients, a slightly better approx-
imation of 1.32388 is possible.

Using this framework, Sharma and Vondrák [30] pre-
sented an improved algorithm that achieves an approxima-
tion of 1
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. Remarkably, [30] also presented a tight

lower bound on any algorithm within the Buchbinder et
al. framework, matching their 1
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-approximation.

To further improve the approximation factor, Sharma and
Vondrák [30] introduced a third ingredient to the mix of al-
gorithms: the descending threshold algorithm. This resulted
in an improved approximation of 1

13 (10 + 4
√

3) ≈ 1.30217.
Furthermore, [30] introduced yet a fourth ingredient to the
mix of algorithms: the independent threshold algorithm of
Karger et al. [21]. Unfortunately, the resulting algorithm
was too complicated to fully analyze analytically, and using
a computer they managed to estimate that it leads to an ap-
proximation of 1.2965.

The question this paper addresses is whether one can
introduce a new approach to simplex partitioning and the
Multiway Cut problem that is simple. As shown by
Sharma and Vondrák [30], the introduction of a third and
a fourth ingredient to the mix of algorithms improves the
approximation factor. However, this addition of algorithms
comes at a price since the resulting mixed algorithm is quite
intricate and is too complex to fully analyze analytically.

1.1 Our Results We present a new and conceptually sim-
ple approach to simplex partitioning and the Multiway
Cut problem. In contrast to current state of the art algo-
rithms [30], our approach is based solely on the two original
ingredients of the Buchbinder et al. framework: the expo-
nential clocks and CKR algorithms. In addition to being
much simpler than state of the art algorithms, we can use
our new approach to provide a provable approximation of
297/229 ≈ 1.29694. This (roughly) matches the 1.2965 ap-
proximation guarantee of [30], whose current proof is partly
verified by a computer.

Using our approach we present two algorithms. The
first is remarkably simple and serves as a case study: it
illustrates how using only the two original ingredients of
the Buchbinder et al. framework it is possible to achieve
an approximation strictly better than the 1
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lower
bound of [30]. This is summarized in the following theorem.

THEOREM 1.1. Using only the exponential clocks and CKR
algorithms, it is possible to achieve an approximation of
17/13 for the Multiway Cut problem.

The second algorithm builds upon the first one and
achieves a provable approximation of 297/229 ≈ 1.29694.
This is summarized in the following theorem.

THEOREM 1.2. Using only the exponential clocks and CKR
algorithms, it is possible to achieve an approximation of
297/229 ≈ 1.29694 for the Multiway Cut problem.

1.2 Our Technique The original framework of [5] uses
only two basic and simple ingredients: the exponential
clocks and CKR algorithms. Additionally, the 1
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lower bound of [30] applies to any algorithm within this
framework. One might ask how can we go below this lower
bound by only using the same two ingredients?

The answer to the above question is that prior to parti-
tioning the simplex we transform it. Transforming a solution
obtained from a relaxation, prior to rounding it, is not a novel
idea. Perhaps one of the most well known examples where
such an approach yields a simple and elegant solution is the
3/4-approximation algorithm of Goemans and Williamson
for the Max SAT problem [19]. It is important to note that
the framework of Buchbinder et al. [5] already uses such an
approach. However, as is the case with the above mentioned
solutions to both Multiway Cut and Max SAT, only a
very restrictive type of transformation, that treats every vari-
able independently, is used. Indeed, the 1
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lower
bound of [30] applies only for this very restrictive type of
transformations. We, on the other hand, employ a general
transformation of the simplex that allows dependencies be-
tween the different variables. To the best of our knowledge,
all cases in which the above transformation approach is used
utilize only the restrictive type of transformations that handle
each variable independently.

1.3 Related Work The geometric relaxation of Călinescu
et al. [7] carries much importance, since Manokaran et al.
[28] proved that its integrality gap can be translated to a
hardness result for the Multiway Cut problem with the
exact same value, assuming the unique games conjecture.
Hence, this suggests that the best possible approximation
guarantee for the Multiway Cut problem can be obtained
by rounding the geometric relaxation of Călinescu et al. [7].
Freund and Karloff [15] showed that this relaxation has an
integrality gap of at least 8/(7 + 1/(k − 1)). Furthermore,
the latter was recently improved to 6/(5 + 1/(k − 1)) − ε
(for any constant ε) by Angelidakis et al. [1]. An additional
lower bound was given by Dahlhaus et al. [11], showing that
Multiway Cut is APX-hard. Thus, there exists a constant
c > 1 such that no polynomial-time algorithm can find a
solution within a factor of c of the optimum, unless P=NP.

We also note that some of the techniques, developed
in the context of Multiway Cut, have found additional
applications. Intuitively, the main idea of the algorithm of
Călinescu et al. [7] is to iterate over the terminals in a ran-
dom order and cut an `1 sphere of random radius around
each terminal, thus partitioning the simplex. This idea was
extended to general metrics, providing improved approx-
imations for the 0-Extension problem [6, 13] (whose
study was originated by Karzanov [23]) and the probabilis-
tic approximation of metrics by tree metrics [14]. For the
0-Extension problem, Călinescu et al. [6] provide an



approximation of O(log k), which was later improved by
Fakcharoenphol et al. [13] to O (log k/ log log k). Both re-
sults are obtained by rounding the metric completion relax-
ation.

In addition to the works already mentioned, several
other special cases and variants of Multiway Cut were
considered in the literature. Karger et al. [21] and Cun-
ningham and Teng [10] present a tight approximation factor
of 12/11 when k = 3. For k = 4, 5, Karger et al. [21]
provide approximation factors of 1.1539 and 1.2161, respec-
tively. For dense unweighted graphs, Arora et al. [2] and
Frieze and Kannan [16] provide a polynomial time approxi-
mation scheme. The Node Multiway Cut problem asks
for the least weight subset of vertices whose removal from
the graph disconnects all terminals. This variant was studied
by Garg et al. [18] who present a 2(1− 1/k)-approximation
algorithm for the problem. They also prove that any im-
provement to the latter factor would also lead to an improve-
ment of the approximation guarantee for Vertex Cover,
for which it is known that no approximation better than 2 can
be achieved assuming the unique games conjecture (Khot
and Regev [24]). The Directed Multiway Cut prob-
lem asks for the least weight subset of edges whose removal
from the graph disconnects all directed paths connecting ter-
minals. Clearly, Directed Multiway Cut generalizes
Node Multiway Cut. For Directed Multiway
Cut, Naor and Zosin [29] give a 2-approximation algo-
rithm, improving upon the O(log k)-approximation of Garg
et al. [18]. The Multicut problem resembles Multiway
Cut, however its goal is to separate k pairs of terminals
{si, ti}. The best known approximation for Multicut is
O(log k) and is given by Garg et al. [17].

Another notable example that is closely related to
Multiway Cut is the Metric Labeling problem. For
the Metric Labeling problem, Kleinberg and Tardos
[25] provide an approximation guarantee of O(log k) by
building upon the tight probabilistic approximation of met-
rics by tree metrics [14]. Chekuri et al. [8] extend
the geometric relaxation of Călinescu et al. [7] to the
more general Metric Labeling problem using earth-
mover metrics, thus yielding a unified treatment of the
problem for various metrics. For the geometric relaxation
with the earthmover metric, Karloff et al. [22] prove an
integrality gap of Ω(log k) for Metric Labeling and
Ω(
√

log k) for 0-Extension. Both integrality gaps trans-
late to hardness results with the same values assuming the
unique games conjecture [28]. Without assuming the unique
games conjecture, the corresponding hardness results are
Ω(
√

log k) for Metric Labeling [9] and Ω(log1/4 k)
for 0-Extension [22].

2 Preliminaries
The input for the Multiway Cut problem is an edge
weighted undirected graph G = (V,E), w : E → R+, and
a set T = {t1, t2, . . . , tk} ⊆ V of k terminals. The goal is
to find a minimum weight subset of edges X ⊆ E such that
all terminals are disconnected in (V,E \ X). Equivalently,
the output is an assignment g : V → {1, . . . , k} that has
the property that g(ti) = i for every i = 1, . . . , k. An edge
(u, v) ∈ X if and only if g(u) 6= g(v).

2.1 Simplex Relaxation We present the Călinescu et al.
[7] geometric relaxation for Multiway Cut. Consider the
k-dimensional simplex ∆k = {x ∈ Rk : x ≥ 0,

∑
i xi =

1}. Denote by ei the ith vertex of ∆k, i.e., the standard basis
vector which has a 1 in the ith coordinate and 0 elsewhere.
The relaxation embeds every vertex u ∈ V into ∆k and each
terminal ti ∈ T is embedded to ei. Intuitively, every point
in ∆k corresponds to a distribution over the set of terminals
T . For simplicity of presentation we denote by u the vector
u ∈ V was embedded to. It is well known that the following
program can be rewritten as a linear program.

min
∑

e=(u,v)∈E

we ·
1

2
||u− v||1

u ∈ ∆k ∀u ∈ V
ti = ei ∀i = 1, . . . , k

2.2 The Exponential Clocks Algorithm The first main
ingredient we use is the exponential clocks algorithm [5]. It
receives as input the embedding of the graph into the simplex
as computed by the relaxation, i.e., {u}u∈V ⊆ ∆k. In the
exponential clocks algorithm, i.i.d Z1, . . . , Zk ∼ exp(1) are
chosen, one for each terminal. Every vertex u ∈ ∆k scales
each Zi by ui (i.e., Zi is divided by ui), and then performs
a competition between the scaled exponentials, assigning
itself to the winner. For completeness, we include a full
description of the algorithm here. We require the following

Algorithm 1 Exponential Clocks
(
{u}u∈V ⊆ ∆k

)
1: choose i.i.d random variables Zi ∼ exp(1) for each
i = 1, 2..., k.

2: ∀u ∈ V assign u to argmin
{
Zi

ui
: i = 1, 2, ...k

}
.

lemma that was proved in [5].

LEMMA 2.1. Given u,v ∈ ∆k that differ only in coordi-
nates i and j where vi = ui + ε and vj = uj − ε for some
ε ≥ 0, the probability that u and v are assigned to differ-
ent terminals by the exponential clocks algorithm is at most:
ε (2− ui − uj).

We note that [5] showed that one can equivalently use
the algorithm of Kleinberg and Tardos for the Uniform



Metric Labeling problem [25]. The reason is that both
the exponential clocks and Kleinberg and Tardos algorithms
satisfy Lemma 2.1.

2.3 The CKR Algorithm The second main ingredient we
use is the CKR algorithm [7]. It receives as input an em-
bedding of the graph into the k-dimensional hypercube, i.e.,
{u}u∈V ⊆ [0, 1]k. We note that the relaxation computes an
embedding of the graph into ∆k, as opposed to [0, 1]k. How-
ever, we will invoke the CKR algorithm after transforming
the embedding which might result in points in [0, 1]k.

First, a uniform random order over the terminals and
a single threshold r ∼ Unif [0, 1] are chosen. Then,
one iteratively goes over the terminals in the chosen order,
assigning each unassigned vertex u to the current terminal in
case the value of u in the coordinate that corresponds to the
current terminal is at least r. For completeness, we include a
full description of the algorithm here.

Algorithm 2 CKR
(
{u}u∈V ⊆ [0, 1]k

)
1: choose r ∼ Unif [0, 1] and σ a uniform random permu-

tation over {1, . . . , k}.
2: for i = 1 to k − 1 do
3: ∀u ∈ V s.t. u is unassigned and uσ(i) ≥ r: assign u

to σ(i).
4: assign all unassigned vertices to σ(k).

We require the following lemma that can be easily
derived from [7]. We note that in [7] it was not stated
explicitly in the form we require. For completeness we
include a full proof.

LEMMA 2.2. Given u,v ∈ [0, 1]k, where u1 ≥ . . . ≥ uk,
and v1 ≥ . . . ≥ vk, the probability that u and v are
assigned to different terminals by the CKR algorithm is at
most:

∑k
`=1

|u`−v`|
` .

Proof. We define for every i = 1, . . . , k the event Ai in
which terminal ti has cut the edge (u, v), i.e., terminal ti
was the first to choose at least one vertex from {u, v} and it
chose exactly one vertex from {u, v}. Thus, the probability
that (u, v) is cut equals Pr

[
∪ki=1Ai

]
. Assume without loss

of generality that ui < vi, and note that:

Pr [Ai]

≤ Pr [r ∈ [ui, vi] ∧ ti appears before {t1, . . . , ti−1} in σ]

= |ui − vi| ·
1

i

Note that the above inequality uses the fact that the coordi-
nates of both u and v are sorted in the same non-increasing
order, since it implies that terminal ti can cut (u, v) only if

it appears before terminals t1, t2, . . . , ti−1 in σ. Using the
union bound, we can conclude that:

Pr
[
∪k`=1A`

]
≤

k∑
`=1

(
|u` − v`| ·

1

`

)

2.4 Edge Structure and Cut Density For simplicity of
presentation, and without loss of generality, we assume a
specific structure of edges’ embedding in simplex. However,
unlike previous works [5, 7, 21, 30], we require a more re-
strictive structure that is described in the following observa-
tion.1

OBSERVATION 2.1. Without loss of generality, one can as-
sume that every edge (u, v) ∈ E is of the form appearing in
Figure 1, for some 1 ≤ i < j ≤ k and ε ≥ 0, where (1)
u1 ≥ . . . ≥ uk, and (2) ui−1 ≥ ui + ε and uj − ε ≥ uj+1.
We call such an edge an (i, j)-edge.

Intuitively, the above observation states that given (u, v) ∈
E, there exists an order of the coordinates such that both u
and v are non-increasing with respect to this order, and that
ui is increased by an additive ε and uj is decreased by an
additive ε, for some i < j and ε ≥ 0.

Given an edge (u, v) ∈ E, Observation 2.1 implies that
its contribution to the relaxation’s objective is 1

2 ||u− v||1 =
ε. Thus, we would like any randomized algorithm to separate
such an edge with probability of at most γε, for a small γ.
Formally, to this end Karger et al. [21] introduced the notion
of cut density, which we restate now.

DEFINITION 2.1. A randomized algorithm is a distribution
over labelings g : ∆k → {1, . . . , k}. Given any edge (u, v)
that satisfies Observation 2.1 for some fixed 1 ≤ i < j ≤ k,
we say that (u, v) is of type (i, j). The cut density of edges of
type (i, j) is at most γi,j if for every edge (u, v) of type (i, j)
satisfying Observation 2.1 the following holds:

lim sup
ε→0

Pr [g(u) 6= g(v)]

ε
≤ γi,j .

As in Karger et al. [21], it is easy to show that any random-
ized algorithm for Multiway Cut achieves an approxima-
tion of γ = max1≤i<j≤k {γi,j}. Hence, from this point on-
wards our goal will be to bound the cut density of edges of
type (i, j), for any 1 ≤ i < j ≤ k. We denote by αi,j and
βi,j the cut density of edges of type (i, j) in the CKR and
exponential clocks algorithms, respectively.

Paper Organization: In Section 3 we give a brief overview
of our new approach of transforming the simplex while al-
lowing dependencies between the different variables. Sec-
tion 4 serves as a case study, presenting a remarkably simple

1Though Observation 2.1 is more restrictive than assumptions on the
structure of an edge made in previous work, its proof is virtually the same.



u = (u1, . . . , ui−1, ui , ui+1, . . . , uj−1, uj , uj+1, . . . , uk) ∈ ∆k

v = (u1, . . . , ui−1, ui + ε , ui+1, . . . , uj−1, uj − ε , uj+1, . . . , uk) ∈ ∆k

Figure 1: The structure of an (i, j)-edge.

algorithm that achieves an approximation guarantee of 17/13.
Finally, Section 5 contains an improved provable approxima-
tion of 297/229 ≈ 1.29694.

3 Simplex Partitioning via General Transformations
3.1 Transformations with Variables Dependencies We
start with some intuition on how one can construct useful
simplex transformations f . Assume, for example, we are
given two points u,v ∈ ∆k where v is obtained from u by
permuting its coordinates. Intuitively, since the Multiway
Cut problem is symmetric, i.e., there is no preference
between the terminals, we would expect that f (v) could
be obtained from f (u) by permuting its coordinates in
exactly the same manner as obtaining v from u. Thus, we
use transformations f that first sort the coordinates, then
transform each coordinate according to its position in the
sorting, and finally place back the transformed coordinates
in their original order. It is important to note that for such
a transformation f to be well defined, it must be the case
that the outcome of the transformation f (u) does not depend
on how ties in the sorting are resolved. Indeed, all the
transformations we use in this work satisfy this. Formally, in
order for a transformation to be useful we require it satisfies
the following definition.

DEFINITION 3.1. f : ∆k → [0, 1]k is feasible if the
following two conditions hold:

1. f (ei) = ei, for every i = 1, . . . , k.

2. For any u ∈ ∆k, satisfying uπ(1) ≥ . . . ≥ uπ(k)
for some permutation π on {1, . . . , k}:
fπ(1) (u) ≥ . . . ≥ fπ(k) (u).

The first property above implies that terminals (or equiva-
lently vertices of ∆k) are fixed points of f . It is required
since each terminal ti must be assigned to itself, and we will
apply f prior to executing the CKR algorithm. The second
property above states that f does not change the order of
coordinates, a useful property in the analysis. For simplic-
ity of presentation, from this point onwards we assume that
given u ∈ ∆k, its coordinates are already sorted in a non-
increasing order, i.e., u1 ≥ . . . ≥ uk. Hence, Definition 3.1
reduces to: (1) f (e1) = e1, and (2) f1(u) ≥ . . . ≥ fk(u).

3.2 The Algorithm Formally, our mixed algorithm re-
ceives the embedding of the graph into the simplex
{u}u∈V ⊆ ∆k as computed by the relaxation, a transfor-
mation f : ∆k → [0, 1]k, and a mix probability p. Similarly

to the framework of [5], our algorithm is just a simple mix of
the two main ingredients, i.e., with probability p we choose
and exponential clocks algorithm applied to the simplex and
with the remaining 1− p probability we choose the CKR al-
gorithm that is executed on the transformed simplex. A full
description of the algorithm appears in Algorithm 3.

Algorithm 3
(
{u}u∈V ⊆ ∆k, f, p

)
1: w.p. p execute Algorithm 1 with input {u}u∈V .
2: w.p. 1− p execute Algorithm 2 with input {f (u)}u∈V .

3.3 Choosing the function f Our goal is to upper bound
the cut density of Algorithm 3, which is achieved by the
following lemma.

LEMMA 3.1. If f is feasible and differentiable, then the cut
density of Algorithm 3 for any edge of type (i, j) satisfying
Observation 2.1 can be upper bounded as follows:

pβi,j + (1− p)αi,j

≤ p (2− ui − uj) + (1− p)
k∑
`=1

1

`

∣∣∣∣∂f`(u)

∂ui
− ∂f`(u)

∂uj

∣∣∣∣ .
Proof. Lemma 2.1 implies that:

βi,j ≤ 2− ui − uj .

Since we assume all edges of type (i, j) satisfy Observation
2.1 and that f is feasible and differentiable, all conditions of
Lemma 2.2 are satisfied and we can conclude:

αi,j ≤
k∑
`=1

1

`

∣∣∣∣∂f`(u)

∂ui
− ∂f`(u)

∂uj

∣∣∣∣ .
The definition of Algorithm 3 concludes the proof.

We strive for a constant cut density, therefore it is
reasonable to choose each f` to be a multivariate polynomial
in the variables u1, . . . , uk of degree 2. Hence, when
operating in this manner, the linear contributions of the
variables u1, . . . , uk in the overall cut density might be
balanced. The main challenge with this approach is to
choose such an f while ensuring the f is feasible and
differentiable.



4 Beyond the 3+
√
5

4 Lower Bound via a Simplex
Transformation

In this section we present a remarkably simple algorithm for
Multiway Cut that achieves an approximation of 17/13.
As mentioned in Section 3, our transformation f : ∆k →
[0, 1]k, given u ∈ ∆k, first sorts the coordinates of u in
a non-increasing order and than applies a transformation to
each of the coordinates that depends on its position in the
sorting. Without loss of generality, rename the coordinates
of u according to this order: u1 ≥ . . . ≥ uk. The
transformation we use is the following:

f` (u) =

(
1 +

`− 1

3

)
u2` +

1

3
u`

k∑
s=`+1

us ∀` = 1, . . . , k.

First, it is important to note that f(u) does not depend on
how ties in the sorting are resolved. Hence, f is well defined.
Second, it is easy to verify that f satisfies Definition 3.1
and that f is also differentiable. We are now ready to prove
Theorem 1.1.

Proof. [Proof (of Theorem 1.1)] Consider an edge (u, v) ∈
E of type (i, j) satisfying Observation 2.1. One can easily
verify that the following hold:

∂f`(u)

∂ui
− ∂f`(u)

∂uj
= 0 ∀` = 1, . . . , i− 1

∂fi(u)

∂ui
− ∂fi(u)

∂uj
=

[
ui

(
1 +

2i

3

)
+

1

3

k∑
`=i+1

u`

]
∂f`(u)

∂ui
− ∂f`(u)

∂uj
= − 1

3
u` ∀` = i+ 1, . . . , j − 1

∂fj(u)

∂ui
− ∂fj(u)

∂uj
= −

uj (4

3
+

2j

3

)
+

1

3

k∑
`=j+1

u`


∂f`(u)

∂ui
− ∂f`(u)

∂uj
= 0 ∀` = j + 1, . . . , k

Note that:

k∑
`=1

1

`

∣∣∣∣∂f`(u)

∂ui
− ∂f`(u)

∂uj

∣∣∣∣
=

[
ui

(
2

3
+

1

i

)
+

j−1∑
`=i+1

u`

(
1

3i
+

1

3`

)

+ uj

(
2

3
+

1

3i
+

4

3j

)
+

k∑
`=j+1

u`

(
1

3i
+

1

3j

) .

Since f is feasible and differentiable, we can apply Lemma

3.1 with p = 7/13 and conclude:

(1− p)αi,j + pβi,j

≤ 14

13
+ ui

(
− 3

13
+

6

13i

)
+

j−1∑
`=i+1

u`
2

13

(
1

i
+

1

`

)

+ uj

(
− 3

13
+

2

13i
+

8

13j

)
+

k∑
`=j+1

u`
2

13

(
1

i
+

1

j

)
(i)
≤ 14

13
+

3

13
(ui + . . .+ uk)

(ii)
≤ 17

13

Inequality (i) follows from the choice of the worst possible i
and j (i.e., i = 1 and j = 2), whereas inequality (ii) follows
from the fact that u ∈ ∆k.

5 Choosing a Simplex Transformation
In this section we present a general framework for obtaining
a transformation f that is feasible, i.e., satisfies Definition
3.1, and differentiable. We then design a 297/229 ≈ 1.2969-
approximation for Multiway Cut proving our main theo-
rem. As before, for any vector u ∈ Rk, we assume without
loss of generality that u’s coordinates are sorted in a non-
increasing order, i.e., u1 ≥ u2 ≥ . . . ≥ uk. For such a
vector u, we denote by u` ∈ Rk the vector obtained from
u by replacing the first ` − 1 coordinates with the value u`.
Thus,

u` = (u`, . . . , u`︸ ︷︷ ︸
` times

, u`+1, u`+2, . . . , uk) .

We choose the transformation f to be a homogenous
multivariate polynomial in u1, . . . , uk of degree 2, i.e., a
quadratic form. For every ` = 1, . . . , k we define f` : ∆k →
[0, 1] as follows:

(5.1) f`(u) ,
(
u`
)T
Au` ,

where A ∈ Rk×k is a symmetric matrix. The trans-
formation f is defined as in Section 4: f(u) ,
(f1(u), f2(u), . . . , fk(u)).

First, it is important to note that f is well defined
since f (u) does not depend on how ties in the sorting are
resolved, and that f is also differentiable. Second, we
provide sufficient conditions on the matrix A such that f
is feasible, i.e., satisfies all the conditions of Definition 3.1.
The following lemma summarizes these conditions.

LEMMA 5.1. Let A ∈ Rk×k be a symmetric matrix and f :

∆k → [0, 1]k where f` =
(
u`
)T
Au` for every ` = 1, . . . , k.

If A satisfies the following conditions:

1. a11 = 1 and aij ≤ 1 for every i, j = 1, . . . , k.

2.
∑`
i=1

∑`
j=1 aij ≥ 0 for every ` = 1, . . . , k.



3.
∑`
i=1

∑r
j=`+1 aij ≥ 0 for every ` = 1, . . . , k and

r = `+ 1, . . . , k.

then f is feasible.

Proof. It is easy to verify that if a11 = 1 then
f(e1) = e1. Next, we prove that for each
` = 1, . . . , k − 1: f`(u) ≥ f`+1(u). Note that:

f`(u)− f`+1(u) =
(
u`
)T
Au` −

(
u`+1

)T
Au`+1

=
(
u2` − u2`+1

)∑̀
i=1

∑̀
j=1

aij + 2 (u` − u`+1)
∑̀
i=1

k∑
j=`+1

aijuj

=
(
u2` − u2`+1

)∑̀
i=1

∑̀
j=1

aij


+ 2 (u` − u`+1)

k∑
r=`+1

(ur − ur+1)

∑̀
i=1

r∑
j=`+1

aij

 (∗)
≥ 0

Inequality (∗) follows since the coordinates
of u are sorted, i.e., u` − u`+1 ≥ 0, and by
properties (2) and (3). By the same arguments
fk(u) = u2k

(∑k
i=1

∑k
j=1 aij

)
≥ 0 and hence f`(u) ≥ 0

for every ` = 1, . . . , k. Finally, by property (1) we get that:

f1(u) =
(
u1
)T
Au1 =

k∑
i=1

k∑
j=1

aijuiuj ≤
k∑
i=1

k∑
j=1

uiuj = 1

Since f`(u) ≥ f`+1(u) for every ` = 1, . . . , k − 1, we
get that f`(u) ≤ 1 for evry ` = 1, . . . , k.

Denote by ai the ith column (or equivalently row) of A.
Given a matrix A that satisfies the requirements of Lemma
5.1, the following lemma upper bounds the cut density αi,j
of Algorithm 2 when executed after the application of the
transformation f .

LEMMA 5.2. If A ∈ Rk×k satisfies the conditions of
Lemma 5.1, then:

αi,j ≤
i−1∑
`=1

2

`

∣∣(ai − aj) · u`
∣∣+

2

i

∣∣∣∣∣
(

i∑
`=1

a` − aj

)
· ui
∣∣∣∣∣

+

j−1∑
`=i+1

2

`

∣∣aj · u`∣∣+
2

j

∣∣∣∣∣
(

j∑
`=1

a`

)
· uj
∣∣∣∣∣(5.2)

Proof. Since A satisfies the conditions of Lemma 5.1, we
can derive that f is differentiable and feasible. In particular,
f1(u) ≥ . . . ≥ fk(u). Hence, for all small enough ε
the edge (u, v) satisfies Observation 2.1 after applying the
transformation f . Therefore, all the requirements of Lemma

2.2 are satisfied and we can conclude that:

αi,j
(i)
≤

k∑
`=1

1

`

∣∣∣∣∂f`(u)

∂ui
− ∂f`(u)

∂uj

∣∣∣∣
(ii)
=

i−1∑
`=1

2

`

∣∣(ai − aj) · u`
∣∣+

2

i

∣∣∣∣∣
(

i∑
`=1

a` − aj

)
· ui
∣∣∣∣∣

+

j−1∑
`=i+1

2

`

∣∣aj · u`∣∣+
2

j

∣∣∣∣∣
(

j∑
`=1

a`

)
· uj
∣∣∣∣∣

Inequality (i) follows from Lemma 2.2 and the definition of
the cut density αi,j . Equality (ii) follows from the definition

of u` and the observation that for any vector x:
∂(xTAx)

∂xi
=

2 (ai · x) (as A is symmetric).

Analyzing the bound given by Lemma 5.2 is not
straightforward due to the absolute values. Hence, to be able
to remove the absolute values in (5.2) we introduce the fol-
lowing partial order over vectors.

DEFINITION 5.1. For a,b ∈ Rk, a � b if for all ` =
1, 2, . . . , k:

∑`
j=1 aj ≥

∑`
j=1 bj .

The following lemma allows us to remove the absolute
values in (5.2), and it plays an important role in the proof
of Lemma 5.4.

LEMMA 5.3. Let a ∈ Rk, the following two are equivalent:

1. a · u ≥ 0 for every u ∈ Rk+ s.t. u1 ≥ . . . ≥ uk ≥ 0.

2. a � 0.

Proof. Note that a · u =
∑k
j=1 (uj − uj+1)

(∑j
i=1 ai

)
,

where uk+1 = 0. If for all j = 1, . . . , k we have that∑j
i=1 ai ≥ 0, i.e., a � 0, then a ·u is certainly non-negative.

Otherwise, if for some j,
∑j
i=1 ai < 0, then a ·u is negative

for a vector u whose first j coordinates are 1/j and the rest
of the coordinates are zero.

5.1 A 297/229-Approximation for the Multiway Cut
Problem In this section we prove our main theorem and
present an algorithm that has a provable approximation guar-
antee of 297/229 ≈ 1.2969 for Multiway Cut. Our algo-
rithm is simply Algorithm 3 with p = 121/229 and a transfor-
mation f as defined by (5.1) with the following matrix A:



A =



1 5
27

5
27

5
27

5
27 . . . 5

27
5
27

1
9

5
108

5
108

5
108 . . . 5

108
5
27

5
108

1
9

5
108

5
108 . . . 5

108
5
27

5
108

5
108 − 5

18 0 . . . 0
5
27

5
108

5
108 0 0 . . . 0

...
5
27

5
108

5
108 0 0 . . . 0


(5.3)

Note that the (symmetric) matrix A has non-zero entries
only in the first 3 rows (and columns) and in coordinate
a44. In the following we summarize useful properties of the
matrix A that we use later on in the proof.

OBSERVATION 5.1. A satisfies the conditions in Lemma 5.1
and:

1. aj = a5 for all j ≥ 5.

2. a1 � a2 � a3 � a5 � a4 � 0. (Note that a5 � a4).

It is easy to verify that the above A satisfies all the con-
ditions of Lemma 5.1. The following is our main technical
lemma bounding the cut density of Algorithm 2 when exe-
cuted after applying the transformation defined by the above
matrix A.

LEMMA 5.4. The cut density of Algorithm 2 executed after
applying the transformation defined by the matrix (5.3)
satisfies:

αi,j ≤
44

27
(ui + uj) +

55

108

∑
` 6=i,j

u`

Using Lemma 5.4 the proof of Theorem 1.2 follows easily.

Proof. [Proof (of Theorem 1.2)] We execute Algorithm 3
with p = 121/229 and a transformation defined by the matrix
A as in (5.3). Lemmas 2.1 and 5.4 imply that for edges of
type (i, j):

(1− p)αi,j + pβi,j

≤2p+ (1− p) 55

108

∑
` 6=i,j

u` + (ui + uj)

(
(1− p) 44

27
− p
)

=
242

229
+

55

229

k∑
`=1

u` =
297

229

The last equality follows since u ∈ ∆k.

We conclude by proving Lemma 5.4.

Proof. [Proof of Lemma 5.4] By Lemma 5.2 the cut den-
sity of Algorithm 2 with transformation defined as in Equa-
tion (5.1) using the matrix A is,

αi,j ≤
i−1∑
`=1

2

`

∣∣(ai − aj) · u`
∣∣+

2

i

∣∣∣∣∣
(

i∑
`=1

a` − aj

)
· ui
∣∣∣∣∣

+

j−1∑
`=i+1

2

`

∣∣aj · u`∣∣+
2

j

∣∣∣∣∣
(

j∑
`=1

a`

)
· uj
∣∣∣∣∣

By the Observation 5.1 and Lemma 5.3 we can remove the
absolute values in the following direction:

αi,j ≤
i−1∑
`=1

2

`
(ai − aj) · u` +

2

i

(
i∑

`=1

a` − aj

)
· ui

+

j−1∑
`=i+1

2

`
aj · u` +

2

j

(
j∑
`=1

a`

)
· uj i 6= 4

α4,j ≤
i−1∑
`=1

2

`
(a5 − a4)u` +

2

4

(
4∑
`=1

a` − a5

)
· u4

+

j−1∑
`=5

2

`
a5 · u` +

2

j

(
j∑
`=1

a`

)
· uj i = 4

For simplicity of presentation, we introduce some useful
notations. Let Hi be the ith harmonic number. For all j ≥ 5,
let T5 =

∑3
i=1 ai5 =

∑3
i=1 aij = 5/18. Additionally,

S` =
∑`
i=1

∑`
j=1 aij . In particular,

S1 = 1, S2 = 40
27 , S3 = 37

18 , S4 = 7
3 ,

S` = S4 + 2(`− 4)T5 ∀` ≥ 4. Therefore, for all ` ≥ 4

1

`
S` =

1

`
(S4 − 8T5) + 2T5 =

1

9`
+

5

9
≤ 7

12
(5.4)

We start by analyzing the case i 6= 4. Rearranging
the bound on αi,j and using the above notation we get the
following equivalent form:

αi,j ≤ 2

i−1∑
r=1

ur

[
(air − ajr)Hr−1 +

2

r

r∑
s=1

(ais − ajs)

](5.5)

+ 2ui

[
(aii − aji)Hi−1 +

1

i

(
Si −

i∑
s=1

ajs

)](5.6)

+ 2

j−1∑
r=i+1

ur

[
(air − ajr)Hi−1 +

1

i

(
−ajr +

i∑
`=1

a`r

)(5.7)

+ajr

r−1∑
s=i+1

1

s
+

1

r

r∑
s=1

ajs

]



+ 2uj

[
(aij − ajj)Hi−1 +

1

i

(
−ajj +

i∑
`=1

a`j

)(5.8)

+ ajj

j−1∑
s=i+1

1

s
+

1

j
Sj

]

+ 2

k∑
r=j+1

ur

[
(air − ajr)Hi−1 +

1

i

(
−ajr +

i∑
`=1

a`r

)(5.9)

+ ajr

j−1∑
s=i+1

1

s
+

1

j

j∑
`=1

a`r

]

Our proof follows by a case analysis of the coefficients of
the u1, . . . , uk variables in the above sum (for every i, j)
proving that they all satisfy the guarantees of Lemma 5.4.
In the course of the analysis we will use inequality (5.4).

Analysis of (5.5): This sum is always zero for all i, j. since
for any r < i, air = ajr.

Analysis of (5.6): We analyze the required cases of the value
of i.

i = 1: For this case the term equals :

2(a11 − a1j) = 2(1− 5

27
) =

44

27

i = 2: For this case the term equals :

2

[
(a22 − a2j) +

1

2
(S2 − a21 − a22)

]
=

71

54
<

44

27

i = 3: For this case the term equals :

2

[
3

2
(a33 − a3j) +

1

3
(S3 − a31 − a32 − a33)

]
=

149

108

<
44

27

Finally, for i ≥ 5 the term equals :

2

i
[Si − T5] ≤ 2

Si
i
≤ 7

6
<

44

27

Analysis of (5.7): (note that j > r > i) We analyze the
required cases of the value of i.

i = 1: For this case there are several subcases. When r = 2
the term equals:

2

[
(−aj2 + a12) +

1

2
(aj1 + aj2)

]
=

55

108

When r = 3 the term equals:

2

[
(−aj3 + a13) +

1

2
aj3 +

1

3
(aj1 + aj2 + aj3)

]
=

55

108

Finally, when r ≥ 4 the term equals:

2

[
a14 +

1

r
(aj1 + aj2 + aj3)

]
=

10

27
+

5

9r
≤ 55

108

i = 2: Again, for this case there are several subcases to
check.
When r = 3 the term equals

2

[
(a23 − aj3) +

1

2
(−aj3 + a13 + a23) +

1

3

3∑
s=1

ajs

]
=

10

27

<
55

108

For r ≥ 4 the term equals:

2

[
a24 +

1

2
(a14 + a24) +

1

r

3∑
s=1

ajs

]
≤ 25

54
<

55

108

i = 3: In this case r ≥ 4 and the term equals:

2

[
3

2
a34 +

1

3
(a14 + a24 + a34) +

1

r

3∑
s=1

ajs

]
≤ 50

108
<

55

108

Finally, when i ≥ 5 (and r > i) the term equals:

2

[
1

i
(a1r + a2r + a3r) +

1

r

3∑
s=1

ajs

]
≤ 22

108
<

55

108

Analysis of (5.8): We analyze the required cases of the value
of i.

i = 1: For this the general term equals:

2

[
a1j + ajj

(
−1 +

j−1∑
s=2

1

s

)
+

1

j
Sj

]

We analyze several subcases of values of j. When j = 2 the
term equals:

2

[
a12 − a22 +

1

2
S2

]
=

44

27

When j = 3 the term equals:

2

[
a13 −

1

2
a33 +

1

3
S3

]
=

44

27



When j = 4 the term equals:

2

[
a14 −

1

6
a44 +

1

4
S4

]
=

44

27

Finally, when j ≥ 5 the term equals:

2

[
a1j +

1

j
Sj

]
≤ 2

[
5

27
+

7

12

]
=

83

54
<

44

27

i = 2: For this case the general term equals:

2

[
a2j − ajj +

1

2
(−ajj + a1j + a2j)

+ajj

j−1∑
s=3

1

s
+

1

j
Sj

]
Again, we analyze several subcases of values of j > i.
When j = 3 the term equals:

2

[
a23 − a33 +

1

2
(−a33 + a13 + a23) +

1

3
S3

]
=

49

36

<
44

27

When j = 4 the term equals:

2

[
a24 − a44 +

1

2
(−a44 + a14 + a24) +

1

3
a44 +

1

4
S4

]
=

77

36
=

44

27
+

55

108

Finally, when j ≥ 5 the term equals:

2

[
a2j +

1

2
(a1j + a2j) +

1

j
Sj

]
=

35

108
+ 2

Sj
j

≤ 35

108
+

7

6
<

44

27

i = 3: For this case the term equals:

2

[
(a3j − ajj)

3

2
+

1

3
(−ajj + a1j + a2j + a3j)

+ ajj

j−1∑
s=4

1

s
+

1

j
Sj

]
Again, we analyze several subcases of values of j > i.
When j = 4 the term equals:

2

[
(a34 − a44)

3

2
+

1

3
(−a44 + a14 + a24 + a34) +

1

4
S4

]
=

271

108
=

44

27
+

95

108

When j ≥ 5 the term equals:

2

[
3

2
a3j +

1

3
(a1j + a2j + a3j) +

1

j
Sj

]
≤ 161

108
<

44

27

Finally, when i ≥ 5 (and j > i) the term equals:

2

[
1

i
(a1j + a2j + a3j) +

1

j
Sj

]
≤2

(
1

5
T5 +

7

12

)
=

23

18
<

44

27

Analysis of (5.9): This case is completely symmetric with
(5.7) with r and j switching roles. Note that in all cases
apart from the cases {i = 2, j = 4} and {i = 3, j = 4},

αi,j ≤
44

27
(ui + uj) +

∑
6̀=i,j

55

108
u`

as desired. For these cases we get:

{i = 2, j = 4} :

α2,4 ≤0 · u1 +
44

27
u2 +

55

108
u3 +

(
44

27
+

55

108

)
u4

+
∑
`>4

55

108
u`

≤ 55

108
u1 +

44

27
u2 +

55

108
u3 +

44

27
u4 +

∑
`>4

55

108
u`

{i = 3, j = 4} :

α3,4 ≤0 · u1 + 0 · u2 +
44

27
u3 +

(
44

27
+

110

108

)
u4

+
∑
`>4

55

108
u`

≤ 55

108
u1 +

55

108
u2 +

44

27
u3 +

44

27
u4 +

∑
`>4

55

108
u`

In the above we use that u1 ≥ u2 ≥ u3 ≥ u4.

Finally, we analyze the case i = 4 (and j ≥ 5). Rearranging
the the bound α4,j we get:

α4,j ≤2

[
(−a44)H3 +

1

4
(S4 − T5)

]
u4

+

j−1∑
r=5

2

[
1

4
T5 +

1

j
T5

]
ur + 2

[
1

4
T5 +

1

j
Sj

]
uj

+

k∑
r=j+1

2

[
1

4
T5 +

1

r
T5

]
ur

≤221

108
u4 +

j∑
r=5

1

4
ur +

47

36
uj +

k∑
r=j+1

1

4
ur

≤44

27
(u4 + uj) +

55

108

∑
r 6=4,j

ur



The second inequality follows by our bounds on Sj

j .
The final inequality follows since 221

108u4 is at most
55
108 (u1 + u2 + u3) + 44

27u4, and that 1
4 <

55
108 , 47

36 <
44
27 .
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[6] Gruia Călinescu, Howard Karloff, and Yuval Rabani. Ap-
proximation algorithms for the 0-extension problem. SODA
’01, pages 8–16, 2001.
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