
Rank Quantization

Ravi Kumar∗
Google

Mountain View, CA, USA
ravi.k53@gmail.com

Ronny Lempel
Yahoo! Labs

Matam, Haifa 31905, Israel
rlempel@yahoo-inc.com

Roy Schwartz†
Technion, Israel Institute of

Technology
Haifa 32000, Israel

schwartz@cs.technion.ac.il

Sergei Vassilvitskii‡
Google

New York, NY, USA
sergeiv@google.com

ABSTRACT
We study the problem of aggregating and summarizing par-
tial orders, on a large scale. Our motivation is two-fold: to
discover elements at similar preference levels and to reduce
the number of bits needed to store an element’s position in
a full ranking. We proceed in two steps: first, we find a to-
tal order by linearizing the rankings induced by the multiple
partial orders and removing potentially inconsistent pairwise
preferences. Next, given a total order, we introduce and
formalize the rank quantization problem, which intuitively
aims to bucketize the total order in a manner that mostly
preserves the relations appearing in the partial orders. We
show an exact quadratic-time quantization algorithm, as
well as a greedy 2/3-approximation algorithm whose running
is substantially faster on sparse instances. As a running ex-
ample, we aggregate rankings of top-10 search results over
millions of search engine queries, approximately reproduc-
ing and then efficiently encoding the underlying static ranks
used by the engine. We evaluate the performance of our al-
gorithms on a web dataset of 12 million (223.5) unique pages
and show that we can quantize the pages’ static ranks using
as few as eight bits, with only a minor degradation in search
quality.

1. INTRODUCTION
With the proliferation of comparison data available, whether

implicitly derived from movie or restaurant ratings or ex-
plicit as in the case of “top-10” lists, there is a need for
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aggregating and summarizing the ranking derived from the
large-scale data. While the rank aggregation problem has
been well studied in the past [7], the problem of accurately
quantizing the ranking into a given number of buckets in
order to concisely summarize the ordering has not been suf-
ficiently addressed.

Quantizing ranks is related to the problem of discovering
partial orders [18, 22] and bucket orders [9, 12]: given infor-
mation on the preference relation between pairs (or higher-
order subsets) of elements, the goal is to assign elements
to any number of ordered buckets in a way that is most
compatible with the given preferences. In addition to prac-
tical uses of this problem [10, 16], it has also been studied
from a theoretical perspective [12, 23]. While the positive
results known for this problem imply almost linear-time al-
gorithms, they all assume that the input is a tournament,
i.e., every pair of elements has a preference relation [23].
Our setting of interest, however, is fundamentally different
for two main reasons. First, the number of buckets is pre-
specified in advance which is not the case in the bucket or-
dering problem. Second, and more importantly, our setting
is extremely sparse as the vast majority of pairs of elements
have no specified preference ranking, though through syl-
logism we can compare elements indirectly. These reasons
make our problem also different from the rank aggregation
problem [1, 17].

A running example. A concrete example that we will
use throughout this work is that of quantizing static rank
scores in the context of web search. It is well known that
search engines make use of query independent static scores
to quantify the inherent quality of Web pages. Such scores
may be based on link-based attributes of the page (e.g., the
widely used PageRank score [4]), URL-based attributes, var-
ious design and content signals, click counts, and more [6,
25]. At runtime, upon submission of a query, static scores
are mixed with query-dependent page scores to rank query
results. Search engines also expose static scores to users
(e.g., via browser toolbars) to give them indications on the
quality of pages being browsed.

As the size of the searchable Web grows to tens of bil-
lions of pages, storing fine-grained static scores requires a



significant number of bits. Even storing the rank of each
page, as derived from the scores, requires over 32 bits per
page. Representing static scores with many bits is prob-
lematic on several counts. First, exposing fine-grained page
scores via toolbars is an overkill for users and may reveal
engine-internal scoring logic to competitors. Second, fine-
grained scores cause the size of the index to increase. Ex-
panding on the latter issue, we note that in order to keep
query latencies low, search engines — by means of mas-
sive distribution [2] — keep their indexes (mostly) in main
memory. This means fitting the lexicon, postings lists, and
per-document ranking-related metadata in RAM. The fit is
tight, and conserving memory for various optimizations is
crucial. While the vast body of index compression literature
(see [19, 24] and references therein) focuses on reducing the
footprint of the postings lists, reducing the size of per-page
ranking metadata is also beneficial, especially with access
patterns to such data being more random and less sequen-
tial than the access patterns to postings lists.

Our contributions. In this work we describe how to quan-
tize the ranks, encoding them with a given number of bits
while preserving as much as possible the relative rankings
reflected in a given set of partial orders. This allows the
quantized ranks to be utilized in the original task with only
minor degradation of quality. Specifically, in the Rank Quan-
tization problem, we are given an order (static rank) over
items (Web pages), a set of relative ranks Q (for example
the relative rankings of top-t results for a set of queries),
and a bit budget b. The goal is to quantize the total order
into k = 2b buckets in a way that minimizes the number of
ties in Q induced by the new, quantized ranking.

We formally define the problem and the objective func-
tion in Section 3, and show an optimal dynamic program-
ming algorithm for this problem. However, as its running
time is quadratic in the number of pages, it does not scale
to Web sized inputs. We therefore develop a greedy ap-
proximation algorithm whose running time is substantially
faster on sparse instances, and prove its near-optimality by
carefully exploiting the structure of the Rank Quantization
problem. We note that a typical input in the above setting
is sparse.

For the formalization of the problem, we assume that the
input to Rank Quantization is consistent: for every pair (i, j)
of elements either i is preferred to j or vice-versa and for
every triple (i, j, k) of elements, if i is preferred to j and
j is preferred to k, then i is preferred to k. In practice,
however, these assumptions rarely hold, and thus we begin
with a pre-processing step, aggregating all of the (poten-
tially inconsistent) rankings into a total order, which we call
Rank Linearization. As this problem is NP-complete (it is
equivalent to the Feedback-Arc-Set problem), we describe a
number of heuristic approaches aimed at removing a mini-
mal number of data points so that the remaining rankings
are consistent.

A summary of our contributions is the following:

• We define the Rank Quantization problem, and give an
exact quadratic-time algorithm and a greedy approxi-
mation algorithm whose running time is substantially
faster on sparse instances. In particular, the structure

of the problem allows us to prove a better approxima-
tion result than that obtained for general submodular
problems.

• We show experimentally that our approximation algo-
rithm far exceeds its guaranteed approximation ratio,
and is superior to several baselines.

• We show evidence that static scores play a significant
role in ranking the top results of search engine queries.

• We evaluate the approaches for Rank Linearization and
Rank Quantization on a dataset collected by posing mil-
lions of queries to Bing and show that we can quantize
the (approximate) static scores to just eight bits while
still distinguishing the relative rankings of the vast ma-
jority, ≈ 98%, of pairs of pages that appear together
in the search results.

• Finally, we empirically show that a very simple base-
line, which is inferior to our approximately optimal
quantization, can close the performance gap if it is al-
lowed to use twice the number of rank buckets.

Organization. The rest of this work is organized as fol-
lows. Section 2 surveys the related work. Section 3 for-
mally defines the problem we solve. Section 4 describes the
datasets used throughout our experiments. Section 5 details
the algorithms we use and the results they achieve for the
Rank Linearization problem. Section 6 details the same for
the Rank Quantization problem. Concluding remarks are in
Section 7.

2. RELATED WORK
The specific application of quantizing static scores was

first addressed by Haveliwala [13]. He proposed two met-
rics to measure how quantized scores distort fine-grained
scores. The first metric, TDist, is similar in spirit to the
metric we use: it is a function of the number of ties induced
by the quantized scores, among the results of a particular
query. He proposed several instance-independent heuristic
quantization schemes, and measured their empirical perfor-
mance on a small set of queries. He also considered a model
whereby query results are drawn from a uniform sample over
the space of Web pages, and are ranked solely by the static
score. For this model he proved that the best quantization
partitions the space of pages uniformly so that each bucket
will hold the same number of pages. In contrast, we opti-
mize the quantization for an actual sample of query results,
solving an instance-dependent problem.

Botev et al. [3] bucket static scores in an incremental in-
dexing context, where postings lists are maintained in de-
creasing static score order. They relaxed the requirement
of strict document ordering by static score, instead only
demanding that document ordering respects a bucketized
static score. In addition to experimenting with the quan-
tization schemes proposed by [13], they experimented with
buckets where the difference between the largest and small-
est static score did not exceed a certain value. They show
that the enterprise search engine’s rank function was hardly
affected by the move from fine grained scores (over 500K



documents) to bucketized scores (with 64 buckets). Their
work is purely experimental in the sense that they do not
pose rank (or score) quantization an optimization problem
but rather evaluate the performance of various heuristics.

Moffat et al. [20, 21] attempt to reduce the memory re-
quired by the index to store a different attribute of docu-
ments, namely their lengths (document lengths play a role in
the scoring phase). They experiment with several heuristic
quantization schemes and measure the ranking degradation
on TREC datasets.

We note that the tools and techniques we use in our work
touch upon many well-researched problems in theoretical
computer science. For ease of presentation, we survey re-
lated work around those problems in the context of the ex-
position rather than in this section.

3. PRELIMINARIES
In this section we formally describe the setting of the Rank

Quantization and the Rank Linearization problems.
Let V = {v1, v2, . . . , vn} be a set of n elements and let
Q = {σ1, σ2, . . . , σs} be a set of s partial orders over V . In
the context of this work, the partial orders in Q will refer to
total orders over (typically very small) subsets of V . For a
partial order σ, we write u �σ v if u dominates v according
to σ. Any partial order σ can be represented as a directed
acyclic graph G = (V, Tσ) where Tσ are the edges of the
tournament induced by σ, i.e., (u, v) ∈ Tσ if and only if
u �σ v. Additionally, any σ can also be represented by
another directed graph H = (V,Rσ) where Rσ are the edges
of a directed path from the highest ranking node in σ to the
lowest ranking node in σ, i.e., Rσ is the longest path in the
tournament Tσ.

In the concrete example we consider, V is the set of web
pages and the partial orders Q are given by the ordering of
the top t results for each query; we will use the terms query
and partial order interchangeably. For a fixed query σ, let
v1 �σ v2 �σ · · · �σ vt be the set of the top t results. The
path Rσ simply has one edge from (vi, vi+1) for 1 ≤ i < t,
whereas the tournament Tσ has an edge (vi, vj) for any pair
1 ≤ i < j ≤ t.

For a given set Q of partial orders, we define the query
graph as the multigraph over V whose edge set corresponds
to all Rσ (keeping multiple parallel edges) and denote it
by GQ. The closure multigraph GTQ of the query graph
has an edge (u, v) any time u appeared prior to (i.e., was
ranked higher than) v in some query (keeping multiple par-
allel edges).

Rank quantization. In the Rank Quantization problem we
are given a weighted graph G = (V,E) with a topological
order π on the nodes and an integer k > 0. The solution
to rank quantization is characterized by k − 1 topologically
decreasing “break point” nodes {b1, b2, . . . , bk−1} such that
B1 = {v : v �π b1}, for 1 < i < k, Bi = {v : bi−1 �π
v �π bi} and Bk = {v : bk−1 �π v}. Each Bi is called
a bucket and let us denote by B the ordered set of all k
buckets. The value of the solution, denoted by cost(B), is
the total weight of edges whose both endpoints are in the
same bucket, i.e., an edge (u, v) ∈ E contributes its weight
to cost(B) if there exists a bucket B ∈ B s.t. u, v ∈ B.

Intuitively, by both endpoints falling in the same bucket,
the original order between them is obscured.

We now formally define the rank quantization problem.

Problem 1 (Rank Quantization). Given a weighted graph
G = (V,E), an ordering π on V , and the desired number k
of buckets, find the partition of V into an ordered set B of
k buckets that minimizes cost(B).

Rank linearization. In practice, there is rarely a single
consistent ordering π. In the example of web ranking, al-
though a static score composes a large part of the final or-
der, many query and user specific factors also influence the
final ordering of results for a specific query. Therefore, be-
fore running the rank quantization algorithms, we must first
find the most consistent order from a set of partial orders,
such as those given by the individual queries.

Formally, given a collection of partial orders Q, the Rank
Linearization problem asks to find a total order π that best
corresponds toQ. This is equivalent to the minimum Feedback-
Arc-Set problem: given a directed multigraph G = (V,E),
or equivalently a weighted directed graph where the weight
of an edge (u, v) is set to the number of copies of this edge
in the multigraph, find the smallest subset F ⊂ E such
that (V,E \ F ) is acyclic. It is known that the minimum
Feedback-Arc-Set problem is NP-complete [15]. Depending
on the multigraph we are working with, we define two ver-
sions of the Rank Linearization problem that differ in their
objective. In the query version we want to remove the fewest
number of edges from GQ, whereas in the tournament ver-
sion we want to remove the fewest number of edges from the
closure graph GTQ.

4. DATASETS
This section describes the two datasets collected for our

experiments. Both are based on Bing query results collected
for samples of queries submitted to Yahoo! between 23–25
of August 2011. The first dataset, hereby referred to as the
random sample, is — as its name suggests — a sample where
each instance in the query log was chosen at random with a
certain probability. The second dataset, hereby referred to
as the popular sample, was generated by taking a single in-
stance of each of the million or so most frequently submitted
queries over the three days above. For each query instance
in both samples, we collected the top-10 Bing results (or
all results returned in those rare cases where Bing returned
fewer than 10 results per query). Table 1 shows the number
of queries and distinct URLs in each sample.

Since the random sample may include multiple instances
of the same query string (submitted by different users and/or
by the same user at different times), it can be seen as a
weighted query sample, where each query is weighted by its
popularity, as opposed to the unweighted popular sample.
Note that Bing occasionally returned slightly different re-
sults for different instances of the same query string.

We checked several properties of the samples that relate
to the construction of the multigraphs GQ and GTQ. Specif-
ically, the sizes of the two largest connected components



Table 1: Statistics of the two query samples.

Random Popular

# query instances 2,707,972 1,002,172
# distinct URLs 12,522,552 5,901,147
size of largest component 6,891,145 3,931,689
size of second largest component 261 968

when ignoring the directions of the edges.1 This is a mea-
sure of the overlap between the results of different queries, as
edges between nodes (pages) in GTQ indicate that the nodes
appeared together in at least one set of top-10 query results.
As shown in Table 1, both samples have a single, dominating
connected component, containing over half the nodes, that
is orders of magnitude larger than all other components.

Note that both algorithmic steps, linearization and rank
quantization, can be done on each connected component of
GQ separately. In particular, the buckets resulting from all
connected components can be trivially aggregated2 without
any loss in the objective. As the large connected compo-
nent dwarfs all other components, the rest of our experi-
ments were conducted on the large component of each sam-
ple rather than on the entire set of fragmented graphs.

5. RANK LINEARIZATION
Section 3 established the equivalence of the Rank Lin-

earization step to solving a minimum Feedback-Arc-Set in-
stance. This section applies known heuristics (and adapta-
tions thereof) for approximating minimum Feedback-Arc-Set
on our test collections. The results indicate that static scores
play a significant role in ranking search results.

5.1 Rank Linearization: Algorithms
It is known that the minimum Feedback-Arc-Set problem

is hard to approximate [11, 14]. The current best algorithm
[8] achieves an approximation of O (logn log logn) and re-
quires the computation of a spreading metric (this is in fact
true for all known approximation algorithms that achieve a
polylogarithmic guarantee). We will not define exactly what
a spreading metric is, only mention that it is expensive to
compute in practice. Thus we resort to heuristic approaches
for Rank Linearization detailed below. Let G = (V,E) be a
directed multigraph where |V | = n, |E| = m.

5.1.1 Sorting by out-degree
One way to compute a full order is to sort the nodes by

their weighted out-degree: those with the highest weighted
out-degree should come early in the order, while those with
out-degree of 0 should come last. In the case of unweighted
tournament graphs (where, for any pair of nodes u, v, ei-
ther (u, v) ∈ E or (v, u) ∈ E) this simple heuristic returns a
5-approximation to the optimum Feedback-Arc-Set [5]. Al-
though the performance guarantees do not carry over to the

1Note that both graphs have the same connectivity proper-
ties.
2The ith bucket of GQ is simply the union of the ith buckets
of all components.

more general case, this heuristic is very simple to compute
in time O(n logn+m).

5.1.2 Eigenvector method
The eigenvector method [7] works by computing the sta-

tionary distribution of a random walk induced by this graph
with a small teleportation probability to make sure the walk
is ergodic. Let wij denote the weight of the edge from vi to
vj in G. Let the n × n transition matrix be M = {mij}
with mij = max(wij − wji, 0). Also, we define a constant
“teleportation” matrix R with Ri,j = ε, for all 1 ≤ i, j ≤ n.
These two matrices are incorporated together by consider-
ing the matrix λM + (1− λ)R for some predefined constant
0 ≤ λ ≤ 1. The algorithm proceeds by finding the eigenvec-
tor that corresponds to the largest eigenvalue of the latter
matrix, and the final order orders the nodes by their value
in this eigenvector.

We use the iterative power method to find the station-
ary distribution. The algorithm begins with a uniform dis-
tribution: u0 = (n−1/2, . . . , n−1/2). In the ith step, this
distribution is updated as: ui = (λM + (1 − λ)R)ui−1 and
renormalized. The algorithm halts when the change between
steps is bounded: ||ui − ui−1||2 ≤ δ, for some pre-specified
constant δ > 0. Since M is generally sparse, and has at
most m � n2 values, each iteration can be implemented in
O(n+m) time.

5.1.3 Generalized Quicksort
The generalized quicksort algorithm has been shown to

lead to near optimal solutions for Feedback-Arc-Set in weighted
tournament graphs [1, 7, 17]. This algorithm was subse-
quently extended to the closely related bucket ordering prob-
lem in weighted tournament graphs [23]. Here we adapt it
to general graphs, preserving the intuition behind the algo-
rithm, but losing the associated performance guarantees.

This is a recursive algorithm that at each step, chooses
a pivot node from G uniformly at random and partitions
the remaining nodes of G′ into two sets, the left set and the
right set (the algorithm then recurses on the two induced
subgraphs). The total order π is obtained by placing the
left set to the left of the pivot and the right set to the right
of the pivot.

In the tournament version the nodes to the left (resp.
right) of the pivot are those that have edges incoming to
(resp. going from) the pivot. Below we describe the adapta-
tion to general graphs where some nodes may not be directly
connected to the pivot.

As before, the algorithm chooses a node vp ∈ G uniformly
at random and labels it as the pivot. The next step is to
select the left and right sets. We first consider the nodes
that are directly connected to vp and then we explore the
remaining nodes.

Let vi be a node in G such that either (vp, vi) ∈ E or
(vi, vp) ∈ E. Equivalently, vi is such that wip + wpi >
0, where wuv is the total weight of edges from u to v as
described above. Intuitively, the higher the value of wip the
higher the probability that vi should be placed to the left of
vp. At the same time, if there are very few edges between
vi and vp making an inconsistent choice has a low cost, and
hence we skew the probability closer to 1/2.



Formally, let θ be a parameter of the algorithm. Denote
by Li the event that vi was placed in the left set. Then, we
have

Pr [Li] =

{
wij

wij+wji
if wij + wji ≥ θ,

1
2

+
wij−wji

2θ
, otherwise.

In the second step we consider each remaining node one
at a time and decide whether to place it to the left or to the
right of the pivot, vp. Let L be the nodes already placed to
the left, similarly let R be those already placed to the right.
Among the nodes that share an edge with some node in L
or R the algorithm chooses a node vi at random. (If no such
nodes exist, vi is chosen at random from all of the remaining
nodes and added to L or R with equal probability.)

The algorithm again makes a probabilistic decision whether
to place the node vi in L or in R. To compute the probabil-
ity of placing vi in each bucket, we consider a simple Markov
Chain with one state for L and one for R. For a set S ⊂ V ,
let wiS =

∑
vj∈S wij be the total weight of the edges from

vi into the S, and wSi =
∑
vj∈S wji be the total weight of

edges from S to vi.
The probability transition matrix of the Markov chain is

the following:

P =


(L) (R)

(L) wiL
wiL+wLi

wLi
wiL+wLi

(R) wiR
wiR+wRi

wRi
wiR+wRi

.
We add the node vi to L with the probability given to L

by the stationary distribution of P :

Pr [Li] =

wiR
wRi+wiR

wiR
wRi+wiR

+ wLi
wLi+wiL

.

The above algorithm can be efficiently implemented, with
each pivot round taking O(n+m) time.

5.1.4 Local search improvements
None of the above algorithms guarantees that the final

linear orders are locally optimal, therefore we perform a local
search to further reduce the number of edges removed (see
Section 5.2 for the specific use). Given a size parameter
s, the algorithm checks whether swapping a pair of nodes
within s of each other in the total order improves the cost
function, and halts when no such pairs are found.

5.2 Rank Linearization: Experimental results
We executed all three linearization algorithms: sorting

by out-degree (SO), the eigenvector heuristic (EG), and the
generalized quicksort (GQ), for each of the two query sam-
ples (on the largest component of GQ when viewed as an
undirected graph). We also applied the local improvement
heuristic (LI) on each of the orderings generated by the al-
gorithms above. The exact settings of our executions were
as follows. We ran EG with λ = 0.85, ε = 1 and δ = 10−10.
Since the GQ algorithm is randomized, we report the av-
erage results across 32 independent runs for each setting of
the parameters. The standard deviation of the results due

Table 2: Percentage of edges in the feedback set for
each linearization algorithm.

Random Popular

Lower Bound 3.7 4.4
SO 17.62 19.91
SO + LI 15.54 19.74
EG 17.03 19.02
EG + LI 15.07 18.86
GQ 19.53 19.16
GQ + LI 19.53 19.16

to different random seeds and different values of θ was under
0.1%. For SO, no special parameters are needed. We chose
s = 512 for LI.

The results are summarized in Table 2, where we measure
the performance of each algorithm according to the fraction
of the edges of GTQ that belong to the feedback set. The
results in Table 2 indicate that, for both samples, we can find
linear orderings that agree with the direction of over 80% of
the edges in GTQ. Intuitively, this suggests that the static
score signal plays a significant role in determining the order
among the top-10 results of queries. Another interpretation
is that query-dependent score factors are all quite high at
the very top of the results list, and so those factors do not
dominate the static score there.

Note that unlike SO and EG, the GQ algorithm did not
benefit from a local improvement step, but produced qual-
itatively worse results. To estimate the performance of the
linearization algorithms, we find that 3.7% of edges in the
random graph and 4.4% of edges in the popular graph must
be cut to break cycles of length 2. These cycles are formed
when a pair of results appears in reverse order in two differ-
ent queries.

6. RANK QUANTIZATION
Ultimately, the quality of quantized ranks is task-oriented,

namely determined by its impact on the application. In our
case we are quantizing search engine static ranks, with the
application being ranking query results. Ideally, we would
want to check the performance of the search engine with the
quantized scores; however, this type of evaluation is beyond
our reach. We therefore use the number of ties introduced
by quantization as a proxy [13], where a tie occurs when
two of the top t results of a query are assigned to the same
bucket. Whenever this happens, the quantized scores ob-
scure any difference in the static ranks of these two pages.
Conversely, when the quantized scores allow the engine to
reconstruct the score relation between all or most pairs of
top-t pages, it should be able to utilize the quantized static
ranks to approximate its original query results as well. With
this measure of success in mind, we present quantization al-
gorithms and their results in the remainder of this section.

6.1 Rank Quantization: Algorithms
We present algorithms for the Rank Quantization problem.

Our first algorithm shows how to solve the problem exactly,
albeit in time quadratic in the total number of elements,



which is untenable for Web scale. The second algorithm is
an adaptation of the classical greedy set cover method to
this setting and can be implemented substantially faster for
sparse inputs (a typical input in our setting is indeed sparse).
The added structure of the problem allows us to prove a 2/3-
approximation performance guarantee in the worst case.

Recall that in the Rank Quantization problem we are given
a weighted graph G = (V,E), |V | = n, |E| = m and a topo-
logical order π on the nodes. The solution to rank quantiza-
tion has a compact representation. It can be characterized
by k− 1 decreasing breakpoint nodes {b1, b2, . . . , bk−1} such
that B1 = {v : v �π b1}, for 1 < i < k, Bi = {v : bi−1 �π
v �π bi} and Bk = {v : bk−1 �π v}. We will drop the
subscript π when it is clear from the context.

6.1.1 Exact algorithm
We exploit the structure of the optimum solution to define

a simple dynamic programming algorithm for the problem.
We will maintain a tableA where A[i, j] for 1 ≤ i ≤ n+1, 1 ≤
j ≤ k stores the cost of bucketing the elements vi through vn
into j buckets. Our goal is to compute A[1, k]. We proceed
to fill in A[i, j] in decreasing order of i. When processing
element vi we decide on the last element, v` of this bucket,
and look up the cost of quantizing the subsequent elements
v`+1, . . . , vn. Formally the recursion step is:

A[i, j] = min
i≤`≤n

A[`+ 1, j − 1] +
∑

vi�vx�vy�v`

wxy

 .

Algorithm 1 presents all the details.

Algorithm 1 Dynamic programming.

1: for j = 1, . . . , k do
2: A[n+ 1, j]← 0
3: end for
4: for i = n, . . . , 1 do
5: for j = 1, . . . , k do
6: A[i, j]← mini≤`≤n(A[`+ 1, j − 1]
7: +

∑
vi�vx�vy�v`

wxy)
8: end for
9: end for

10: Output A[1, k]

With some preprocessing, we can execute the recursive
step in O(n) time, which leads to an O(n2k) overall run-
ning time for the algorithm. As we stated earlier, this is
prohibitive for large n.

6.1.2 Greedy approximation
Since the running time of the exact dynamic programming

algorithm is too large, one can settle for a provably approx-
imate solution that can be computed much faster. Recall
the objective of the problem is to find a set of buckets that
minimizes the number of edges in the subgraphs induced by
each bucket:

k∑
i=1

∑
u,v∈Bi

wuv.

Alternatively, we can maximize the number of edges be-
tween buckets. To proceed with the analysis, we say an

edge (u, v) is cut by a breakpoint b if u � b � v. Let
C(b) = {(x, y) ∈ E | x � b � y} be the set of edges cut by a
breakpoint. Then the total weight of the cut is:

|C(b)| =
∑

(x,y)∈C(b)

wxy.

Extending this definition to multiple breakpoints, for a set
B = {b1, b2, . . . , b`}, the set of edges cut is:

C(B) =
⋃
b∈B

C(b).

Similarly, the total weight is:

|C(B)| =
∑

(x,y)∈C(B)

wxy.

Therefore an equivalent formulation of the rank quantiza-
tion problem is to find a set B = {b1, . . . , bk−1} of break-
points that maximizes the total number (weight) of edges
cut, |C(B)|. This can be viewed as a special case of the well
studied Maximum Coverage problem [11]: given a (weighted)
ground set N , a collection S ⊆ 2N of subsets of N , and a pa-
rameter k, find at most k subsets out of S, say S1, S2, . . . , Sk ∈
S that maximize | ∪ki=1 Si|, i.e., the weight of the elements
in the union.

In this formulation each edge (u, v) defines an element
of the ground set E, and each breakpoint bi defines a set
Si = C(bi) ⊆ E. Algorithm 2 shows all the details. With a
careful implementation this problem can be solved in time
O(nk +m logm). The greedy algorithm that iteratively se-
lects the set that covers the highest number of yet uncovered
elements yields a 1−1/e approximation for Maximum Cover-
age. Below we show that due to the special structure of the
problem, the same greedy algorithm achieves a 2/3 > 1−1/e
approximation for rank quantization. (We conjecture that
the correct bound for this algorithm is 3/4.)

Algorithm 2 Greedy algorithm.

1: S ← ∅
2: T ← ∅
3: while |S| < k do
4: b← arg maxb′ |C(b′) \ T |
5: T ← T ∪ C(b)
6: S ← S ∪ {b}
7: end while
8: Output |C(S)|

Theorem 2. The greedy algorithm achieves a 2/3-appro-
ximation to the maximization version of Rank Quantization.

Proof. Let gi be the element selected in the ith round,
and denote by Gi the solution computed by selecting the
first i elements greedily. Thus Gi = Gi−1 ∪ {gi}, where
G0 = ∅. Let Hi be the k− i elements that optimally extend
the solution Gi. We will compare the cost of the greedy
solution, Gk to that of the optimal solution, H0.

Finally, for a set S, let

∆i(S) = |C(Gi ∪ S)| − |C(Gi)|,

be the incremental benefit of selecting breakpoints in S, hav-
ing already selected Gi. To simplify notation for singleton
sets S, we will write ∆i(s) instead of ∆i({s}).



We will show that, in every step, the greedy algorithm’s
decision is nearly optimal.

Lemma 3. For i ≥ 1, ∆i−1(Hi−1)−∆i(Hi) ≤ 3
2
∆i−1(gi).

Given Lemma 3, we can complete the proof of the theorem
by the following argument:

|C(H0)| = ∆0(H0)

= ∆k(Hk) +

k∑
i=1

(
∆i−1(Hi−1)−∆i(Hi)

)
≤ 3

2

k∑
i=1

∆i−1(gi)

=
3

2
|C(Gk)|,

where we use Lemma 3 and the fact that Hk = ∅ to reach
the first inequality.

Now, we proceed to establish Lemma 3, which uses the
specific structure of our problem.

Proof of Lemma 3. To prove the lemma, given the greedy
solution after i− 1 steps, Gi−1, its optimal extension, Hi−1

and the greedily selected breakpoint gi, we exhibit a set
S ⊂ Hi−1 with |S| = k − i such that

∆i−1(Hi−1)−∆i(S) ≤ 3

2
∆i−1(gi).

Since Hi is the optimal extension of Gi, ∆i(Hi) ≥ ∆i(S)
and this establishes the proof.

Denote the elements ofHi−1 = {h1 ≺ h2 ≺ · · · ≺ hk−(i−1)}
and let g = gi be the next point selected by the greedy al-
gorithm.

Case 1. Suppose g ≺ h1 (a similar argument holds for,
g � hk−i+1). Consider a solution S = Hi−1 \ {h1}.

By the greedy property of g, ∆i−1(g) ≥ ∆i−1(h1). Fur-
thermore, g covers no more edges from C(S) than h1 and
hence we have

C(g) ∩ C(S) ⊂ C(h1) ∩ C(S).

Therefore, ∆i(S) ≥ ∆i−1(S), and we have:

∆i(S) + ∆i−1(g) ≥ ∆i−1(S) + ∆i−1(h1) ≥ ∆i−1(Hi−1).

Case 2. Suppose hj ≺ g ≺ hj+1. To untangle the in-
teractions between ∆i−1(hj),∆i(g) and ∆i(gj+1), consider
subdividing the edges cut by hj and hj+1 into the following
five disjoint sets:
E1 = C(hj) \ C(g) \ C(Gi),
E2 = C(hj) ∩ C(g) \ C(Gi),
E3 = C(g) \ (C(hj) ∪ C(hj+1)) \ C(Gi),
E4 = C(hj+1) ∩ C(g)| \ C(Gi), and
E5 = C(hj+1) \ C(g) \ C(Gi).

Then,
∆i−1(hj) = |E1|+ |E2|,
∆i−1(g) = |E2|+ |E3|+ |E4|, and
∆i−1(hj) = |E4|+ |E5|.

Assume that:

|E1| ≤ |E5|. (1)

The reverse case is similar. Since g was the point maximizing
∆i−1(g),

∆i−1(g) = |E2|+ |E3|+ |E4| ≥ |E1|+ |E2| = ∆i−1(hj). (2)

And:

∆i−1(g) = |E2|+ |E3|+ |E4| ≥ |E4|+ |E5| = ∆i−1(hj+1).
(3)

Let S = Hi−1 \ {hj}. Then, compared to Gi−1 ∪ Hi−1,
the solution Gi−1∪S∪{g} will cut the edges in E3, but will
no longer cut those in E1. Hence:

∆i−1(Hi−1)− (∆i(Hi) + ∆i−1(gi)) = |E1| − |E3|.

Summing Equations (1) and (2) we have:

2|E1| ≤ |E5|+ |E3|+ |E4|.

Using Equation (3) we have:

2|E1| ≤ |E2|+ |E3|+ |E3|+ |E4|
=⇒ 2(|E1| − |E3|) ≤ |E2|+ |E4|

=⇒ ∆i−1(Hi−1)− (∆i(Hi) + ∆i−1(gi)) ≤
1

2
∆i−1(g1).

In both cases we bound the loss due to greedy behavior,
which allows us to conclude the proof.

6.2 Bucketing results on synthetic datasets
Recall that the dynamic programming algorithm that op-

timally solves the rank quantization problem is quadratic
in the number of input pages (graph nodes), which is pro-
hibitive for the sizes of our query samples. Therefore, to
evaluate the performance of Greedy with respect to the
optimal algorithm, and in particular to empirically check
whether it exceeds the 2/3 approximation guarantee on the
Maximum Coverage instances generated by Rank Quantiza-
tion (see Section 6.1), we compare the two on synthetic work-
loads where we can afford to optimally solve the problem
instances.

We generated random ordered graphs with the following
parameters: N = 215 is the number of nodes, Q = 213 is
the number of queries, and k = 32 is the number of re-
quired buckets. The nodes are ordered 1, . . . , N , meaning
that all edges are ordered from lower-numbered nodes to
higher-numbered nodes. We denoted the number of results
per query by t, and experimented with t = 8, 10, 12, 14
and 16.

We considered each query as a random subset of t nodes
(this is similar to the model used in [13]). We ran both
algorithms on these synthetic graphs and measured the per-
formance of the greedy approximation as compared to the
optimal solution. Table 3 lists the ratio of the objective
functions of the greedy approximation to the optimal solu-
tion for both the minimization and maximization versions
of the problem. Each entry in the table was computed by
averaging 128 independent samples of the input graph. As
can be seen from the table, the greedy approximation works
extremely well for both objectives, with a deviation from op-
timum of at most 2.5% for the minimization objective and
roughly 0.5% for the maximization objective.
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Figure 1: Fraction of edges left uncut by the different rank quantization methods in the unweighted (a)
popular (b) random query graphs.
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(b) Random

Figure 2: The relative performance of the random and even baselines as compared to the greedy approximation
algorithm, in terms of uncut edges, on the unweighted (a) popular and (b) random query graphs.

Table 3: The approximation ratio of the greedy al-
gorithm on synthetic random queries.

t Minimization Maximization

8 1.024 0.997
10 1.019 0.997
12 1.017 0.997
14 1.019 0.996
16 1.022 0.994

The synthetic graphs above have certain characteristics
that are similar to the graphs induced by the real query
samples. When linearizing both the random and popular
samples (see Section 5.2), the average length of an edge con-
necting two adjacent results of the same query was approx-
imately n/12. Since queries had almost exclusively 10 re-
sults, this implies that on average, in both samples, queries

are well distributed throughout the linear order, and can be
reasonably approximated by a random subset of 10 pages.

6.3 Bucketing results on query samples
We evaluated the performance of the greedy approxima-

tion algorithm on weighted and unweighted multigraphs in-
duced by both the popular and random query samples.3 For
each graph we chose the best linearization (as described in
Section 5.2). Since the original query results were not fully
consistent with the linearized rankings, for the purposes of
the quantization experiment we reordered each top-t list to
be consistent with the linearized order.

When evaluating unweighted multigraphs, we assigned each
(individual) edge a weight of 1. The weighted versions were
constructed to account for the fact that inducing a tie be-
tween the static ranks of the first two results of a query
causes higher potential damage than inducing a tie at the

3Even in the popular sample, where queries do not repeat,
edges may repeat (hence creating a multigraph) as the same
pair of pages may appear in the results of multiple queries.
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Figure 3: Fraction of edges left uncut by the different rank quantization methods in the weighted (a) popular
(b) random query graphs.
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Figure 4: The relative performance of the random and even baseline, in terms of uncut edges, as compared to
the greedy approximation algorithm on the weighted (a) popular and (b) random query graphs.

bottom of the results page (as ties may cause the engine to
erroneously swap the results). Thus, in the weighted version
of the problem, we assign an edge connecting results i and
i+ 1 a weight of 1

log2 (1+i)
(this weighting was motivated by

the position discount used in computing DCG).
To evaluate the performance of the greedy approximation

algorithm, we consider two additional quantization heuris-
tics. The first, which we call even, selects evenly spaced
breakpoints in the total order. Given an ordering on n
points, it selects points in positions n/k, 2n/k, . . . , n − n/k as
the breakpoints. The second, which we call random, selects
k − 1 points uniformly at random as breakpoints. For all
heuristics, when quantizing a total order, we measure the
cost of the solution, i.e., the number of uncut edges — edges
whose endpoints belong to the same bucket. Equivalently,
this counts the number of induced static rank ties between
pages co-appearing in the results of a query, i.e., pairs of
results whose true rank relation has been obscured.

Figure 1 illustrates the number of uncut edges as a func-
tion of the number of buckets, in the unweighted versions of

the popular and random graphs. Both the greedy approxi-
mation and the even heuristics perform very well, whereas
random lags behind. For example, when the number of bits
available to store the static rank is set to 8, corresponding to
256 distinct buckets, the greedy approximation leaves 1.9%
of edges in the random sample uncut (and 2.3% in the pop-
ular sample). The even heuristic does not perform as well,
leaving 3% and 2.8% of edges uncut respectively. To further
illustrate the difference between the three approaches, we
plot the relative performance of the two baselines as com-
pared with the greedy algorithm (in terms of uncut edges)
in Figure 2. Here, we can clearly see that the gap between
the greedy algorithm and the two baselines increases with
an increased number of buckets.

We repeated the same set of experiments on the weighted
graphs. We again show both the absolute results in Figure
3 and the relative performance of greedy over the baseline
in Figure 4. Here the difference between the greedy algo-
rithm and the even heuristic is more pronounced. The ef-
fect is not surprising, since the even heuristic is independent



of the weights, whereas the greedy algorithm selects more
breakpoints near the top of the ranking and fewer near the
bottom. The relative performance of even is about 50%
worse in the weighted case: with 256 buckets on the popular
graph it leaves 85% more weight uncut than the greedy algo-
rithm (3.5% versus 1.9%); when the total number of buckets
is around one thousand, the even heuristic is a factor of 3
worse than the greedy algorithm on the random query graph.

Despite the even heuristic not performing as well as the
greedy algorithm and not being able to adapt to weighted
edges, the loss in performance may be small in practical
terms. Note that granting even a single extra bit for storing
the quantized rank enables even to catch up to the perfor-
mance of the greedy algorithm. In other words, even quanti-
zation with a bit budget of b+1 — using twice the number of
buckets — outperforms greedy bucketization with a budget
of b bits.

7. CONCLUSIONS
This work formally defined the Rank Quantization prob-

lem and presented (quadratic) exact and approximation al-
gorithms for it. Technically, before tackling the Rank Quan-
tization instance, we performed a Rank Linearization step for
finding a full order of good agreement with many partial
orders over a set of elements.

Our experimental results, over two different samples com-
prised of millions of queries and pages each, showed that it is
possible to find a linear order of the pages that agrees with
roughly 80% of the rank preferences expressed by queries.
This indicates that static scores play a significant role in de-
ciding the ranking among the top results of queries. More-
over, we find that this linear order can be effectively quan-
tized. Perfectly preserving the ranks in the largest connected
component of the graphs we consider requires 23 bits of pre-
cision for the random query graph and 22 bits for the popu-
lar query graph. However, if a small loss in precision can be
tolerated, significantly fewer bits are needed. Specifically,
when quantizing with just 8 bits, i.e. when using just 256
different ranks, the relative rankings of only 2% of pairs of
URLs in the top-10 results are obscured.
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