
Discrepancy Without Partial Colorings
Nicholas J. A. Harvey1, Roy Schwartz2, and Mohit Singh3

1 Department of Computer Science,
University of British Columbia. Email: nickhar@cs.ubc.ca.∗

2 Microsoft Research,
Redmond, WA. schwartz.roi@gmail.com

3 Microsoft Research,
Redmond, WA. mohits@microsoft.com

I cannot pretend to feel impartial about colours. I rejoice with the brilliant ones and am
genuinely sorry for the poor browns.

Winston Churchill

Abstract
Spencer’s theorem asserts that, for any family of n subsets of ground set of size n, the elements
of the ground set can be “colored” by the values ±1 such that the sum of every set is O(

√
n) in

absolute value. All existing proofs of this result recursively construct “partial colorings”, which
assign ±1 values to half of the ground set. We devise the first algorithm for Spencer’s theorem
that directly computes a coloring, without recursively computing partial colorings.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.1.6 Opti-
mization, G.2.1 Combinatorics.

Keywords and phrases Combinatorial Discrepancy, Brownian Motion, Semi-Definite Program-
ming, Randomized Algorithm.

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In combinatorics, the discrepancy problem can be stated as follows. Given a universe
U = {1, 2, . . . , n} and a family of subsets S = {S1, S2, . . . , Sm} the goal is to find a function
χ : U → {±1} that minimizes

max
1≤j≤m

∣∣∣∣∣∣
∑
i∈Sj

χ(i)

∣∣∣∣∣∣
 . (1)

The function χ is called a coloring. The discrepancy of S is the minimum of (1) over
all colorings. Determining the discrepancy of a set system is a fundamental problem in
combinatorics [1, 7, 14] that has a wide range of applications in computer-science [9, 5, 10, 15].
One of the most celebrated results in this area is Spencer’s theorem [17] stating that any
family S with m = n has discrepancy at most 6

√
n. More generally, if m ≥ n, the upper

bound becomes O
(√

n · log ((2m)/n)
)
. This bound is tight up to constant factors for all

m ≥ n. Recently, efficient algorithms were developed [4, 3, 13] to construct colorings that
match Spencer’s bounds up to constant factors.

∗ Supported by an NSERC Discovery Grant and a Sloan Foundation Fellowship.

© Nicholas J. A. Harvey and Roy Schwarz and Mohit Singh;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Discrepancy Without Partial Colorings

Discrepancy is also a topic of major interest in convex geometry, and many combinatorial
discrepancy results have a more general geometric statement. The geometric form of
Spencer’s theorem is: for all {x1, . . . , xn} ⊂ [−1, 1]n, there exists χ : U → {±1} with∥∥∑

i∈U xiχ(i)
∥∥
∞ ≤ 6

√
n. This geometric form follows from Spencer’s original proof, and it

is also a special case of a geometric result that was independently proven by Gluskin [12].
Gluskin’s proof was simplified by Giannopoulos [11], and an algorithmic form of Giannopoulos’
theorem was recently given by Rothvoss [16].

All of the previous work on Spencer’s theorem, including the geometric results and the
algorithmic results, are based on the idea of producing a partial coloring. In this approach,
one first obtains a coloring of half the elements of U , then recurses on the residual family of
subsets obtained by deleting all colored elements. Although the partial coloring approach
suffices to obtain tight results for Spencer’s theorem, there are other important discrepancy
problems for which this approach does not currently (and perhaps cannot) yield tight results.
A notable example is the Beck-Fiala conjecture [6], which asserts that: for every set system
S for which every element of U is contained in at most t sets, the discrepancy of S is
O(
√
t). The geometric form of the Beck-Fiala conjecture is the Komlós conjecture: for all

{x1, . . . , xn} ⊂ Rn with ‖xi‖2 ≤ 1, there exists χ : U → {±1} with
∥∥∑

i∈U xiχ(i)
∥∥
∞ ≤ O(1).

All known results [18, 4, 13] towards these conjectures that are based on partial coloring
have the drawback that they incur an extra factor of O(logn) in the discrepancy, due to the
O(logn) recursive steps. The only known approach for these conjectures that avoids the
extra O(logn) factor is Banaszczyk’s geometric technique [2], which is not based on partial
coloring, and incurs only an O(

√
logn) factor, but has the drawback that it is not algorithmic.

Due to the drawbacks of these previous results, it has been an open question to find new
techniques that avoid partial colorings for these discrepancy problems, particularly algorithmic
techniques. Such new techniques would hopefully lead to progress on the Beck-Fiala/Komlós
conjectures.

1.1 Our Contribution
In this work we devise the first algorithm for Spencer’s theorem that directly computes a
(full) coloring, without recursively computing partial colorings. Our algorithm builds upon
the techniques of Bansal [4] and Lovett and Meka [13], which we now review.

Let c1, . . . , cm be suitable parameters, and define

Pdisc =
{

x ∈ Rn :
∣∣1Sj · x∣∣ ≤ cj ∀1 ≤ j ≤ m} .

Bansal’s breakthrough result [4] performs a random walk with Gaussian increments (i.e.,
discretized Brownian motion) starting at the origin. The covariance matrix of each Gaussian
step comes from a feasible solution to a semidefinite program (SDP) that describes a “vector
relaxation” of the discrepancy problem. If at any time the random walk approaches a face
of [−1, 1]n, it sticks to that face and continues walking within that face. If at any time the
random walk gets very close to a discrepancy constraint, i.e., a face of Pdisc, that discrepancy
constraint is pushed away from the origin to very carefully chosen distances, and the SDP
is modified accordingly. Spencer’s non-constructive theorem is used to ensure feasibility of
each SDP.

Lovett and Meka [13] perform a similar random walk, except that every Gaussian step
has covariance matrix equal to the identity. If at any time the random walk gets very close to
a discrepancy constraint, it sticks to that face and continues walking within that face. They
prove that, when the random walk stops, a constant fraction of the elements are colored,
thus obtaining a partial coloring.

N. J. A. Harvey and R. Schwarz and M. Singh 3

Both of these algorithms necessarily result in a partial coloring, not a full coloring. For
Bansal’s algorithm, this is because feasibility of the SDP is proven using Spencer’s theorem,
which only ensures existence of a “partial vector coloring”, not a “full vector coloring”. For
the Lovett-Meka algorithm, this is because their random walk will likely stick to many
discrepancy constraints before terminating. The intersection of these discrepancy constraints
need not contain any point in {−1, 1}n, and hence the walk cannot directly produce a full
coloring.

Our algorithm borrows many ideas from Bansal and from Lovett-Meka, but has two key
differences.

The first difference is the way in which we distort the random walk. Like Bansal, our
Gaussian steps may use different covariance matrices. Whereas Bansal’s covariance
matrices change only when the SDP changes (i.e., when the walk gets very close to a
discrepancy constraint), our walk’s covariance matrices change in every step. Thus, our
walk should be viewed as a discretized diffusion process. Our covariance matrices do not
directly come from vector colorings, but instead from a more geometric viewpoint. We
prove the following geometric result: for any polytope P and point θ ∈ P there exists an
ellipsoid centered at θ and contained inside P such that the trace of the semi-definite
matrix defining the ellipsoid is large compared to the distances of the closest faces of P
to θ. Our proof of this geometric claim uses SDP duality and might be of independent
interest. Unfortunately this geometric approach by itself is not sufficient, as one might
end up close to a vertex of Pdisc ∩ [−1, 1]n, thus getting stuck without the ability to fully
color all the elements.

The second difference is that we slowly move all discrepancy constraints away from the
origin in every step. This allows the random walk to escape potential areas of Pdisc in
which it might get stuck. Furthermore, the distance that every constraint is moved is a
deterministic function of the the time step, whereas in Bansal’s approach the movement
of the constraints depends on the random walk. The movement of our constraints must
also be carefully chosen. On one hand the rate in which the discrepancy constraints are
pushed needs to be slow enough such that one still obtains optimal discrepancy bounds.
On the other hand this rate needs to be fast enough so the random walk does not get
stuck too close to some discrepancy constraints. At the heart of this approach is the
following simple observation: the variance of the distance between the location of the
random walk and any fixed discrepancy constraint is upper bounded by the number of
elements which are still uncolored. Hence, a delicate balance is needed to ensure that
the rate in which the discrepancy constraints are moved is larger than the number of
uncolored elements.

Let us make one final remark concerning the difference between our algorithm and previous
ones. As stated above, our algorithm directly computes a full coloring without recursively
computing partial colorings. On the other hand, our analysis partitions the algorithm’s
execution into several phases, which are somewhat analogous to the partial coloring steps
of the Bansal and Lovett-Meka algorithms. Nevertheless, it is still accurate to say that our
algorithm does not use partial colorings as the algorithm’s behavior is oblivious to these
phases of the analysis.

4 Discrepancy Without Partial Colorings

2 Preliminaries

Ellipsoids: Given a positive semi-definite n× n matrix Σ and its symmetric n× n square
root matrix B (i.e. Σ = B2) we denote the ellipsoid it defines centered at point θ ∈ Rn by:

E (Σ, θ) , {y = B · u + θ : u ∈ Rn, ||u||2 ≤ 1} .

Additionally, we denote the Euclidean sphere centered at θ with radius r by: Ball(θ, r).
The Discrepancy Polytope: We denote by 1S ∈ Rn the characteristic vector of the subset
of elements S ⊆ U . Our algorithm conducts iterations which we index by t. For any subset
Sj ∈ S and iteration t we define:

cj(t) , C ·

√
n · ln

(
2m
n

)
·
(

1− 2−
γ2·t
a

)
.

Here C and a are absolute constants and γ a parameter depending on n, all to be chosen
later. We define the following polytopes:

Pdisc(t) ,
{

x ∈ Rn : ∀1 ≤ j ≤ m
∣∣1Sj · x∣∣ ≤ cj(t)}

P(t) , Pdisc(t) ∩ {x ∈ Rn : ∀1 ≤ i ≤ n |xi| ≤ 1} .

Distances: In order to define our notion of effective distance of a point θ ∈ P(t) from the
jth discrepancy constraint, we need the following definition of the set of variables which are
active, i.e., all variables which are not colored:

Cact(θ) , {1 ≤ i ≤ n : |θi| < 1− 1/n} .

We also denote the set of active variables in S ⊆ U by: Sact(θ) , S ∩ Cact(θ). For every
point θ ∈ P we denote its distance with respect to the jth discrepancy constraint by:

dj(θ, t) ,
cj(t)−

∣∣1Sj · θ∣∣
||1Sact

j
(θ)||2

.

Gaussian Distribution and Concentration: If X ∼ N(0, 1) we denote the cumulative
distribution function of the normalized gaussian by: Φ(t) = Pr [X ≤ t]. We also require the
following concentration result by [4].

I Lemma 2.1 (Bansal [4]). Let X1, . . . , XT be random variables and Y1, . . . , YT be random
variables where each Yi is a function of Xi. Suppose that for all 1 ≤ i ≤ T and x1, . . . , xi−1 ∈
R, Yi|X1=x1,...,Xi−1=xi−1 ∼ N(0, ρ(x1, . . . , xi−1)) where ρ(x1, . . . , xi−1) ≤ 1. Then for any
λ ≥ 0:

Pr
[
|Y1 + . . . YT | ≥ λ

√
T
]
≤ 2 · e−λ

2/2 .

3 Algorithm

In this section we present an algorithm that fully colors all elements without resorting to
partial coloring. Our algorithm conducts a random walk where in each step the direction
that the algorithm moves to is determined by a suitable ellipsoid. Specifically, given a
point θ and time t, a maximum trace ellipsoid that is contained inside Pdisc(t) is found. In
addition to being contained inside Pdisc(t), we impose two additional requirements. The first
is that the ellipsoid is also contained in the subspace of all variables that are still active:

N. J. A. Harvey and R. Schwarz and M. Singh 5

{x ∈ Rn : xi = θi ∀i ∈ U \ Cact(θ)}. The reason for that is that a variable i which is not
active anymore is fully colored, i.e., |xi| ≥ 1− 1/n, and its value should not be changed. The
second requirement is that the ellipsoid is not too large and is in fact contained inside the
Euclidean unit sphere centered at θ. Such an ellipsoid can be found, for example, by solving
the following semi-definite program:

SDP (θ, t) max Tr (Σ)
s.t. E (Σ, θ) ⊆ Pdisc(t) ∩

{
x ∈ Rn : xi = θi ∀i ∈ U \ Cact(θ)

}
∩ Ball(θ, 1)

Note that the above semi-definite program is parameterized by a point θ and time t. Let us
now provide a precise description of our algorithm and our main theorem.

Algorithm 1: (n,S, γ)
1 Initialize: x(0)← 0, t← 0, γ ← 1

n2 .
2 while Cact(x(t)) 6= ∅ do
3 Let B(x(t), t) be the square root of the solution for SDP (x(t), t).
4 Choose g(t) ∈ Rn s.t. gi(t) ∼ N(0, 1) i.i.d ∀1 ≤ i ≤ n.
5 x(t+ 1)← x(t) + γ ·B(x(t), t) · g(t).
6 if x(t+ 1) /∈ P(t+ 1) then
7 Abort.
8 t← t+ 1.
9 for i = 1 to n do

10 Round xi(t) to the closest integer.
11 Output x(t).

I Theorem 3.1. With a probability of at least 1/poly(n) Algorithm 1 terminates in polynomial
time without aborting and outputs a coloring with discrepancy of O

(√
n · ln ((2m)/n)

)
.

Note: It is important to note that we can in fact compute a suitable ellipsoid without solving
SDP (θ, t). It can be inferred from our proof techniques that one can directly compute a
feasible solution to SDP (θ, t), whose objective value is sufficiently high that it is enough to
guarantee the correctness of Theorem 3.1. This direct computation requires only the use of
Gram-Schmidt orthogonalization, thus making Algorithm 1 considerably faster and simpler.
Details are deferred to the full version of the paper.

4 Analysis

We first present the geometric core of our argument, namely that there is a suitable ellipsoid
Algorithm 1 can choose in every iteration t. Then we proceed by showing that this maximum
trace ellipsoid is enough to prove the correctness of the algorithm as stated in Theorem 3.1.

4.1 Geometric Core
At the heart of our geometric approach lies the following theorem, which proves the existence
of a suitable ellipsoid. Specifically, the ellipsoid we find is centered at a given point θ and is
contained inside the given polytope P. The trace of the semi-definite matrix defining the
ellipsoid is comparable to the distances of the closest faces of P to θ.

6 Discrepancy Without Partial Colorings

I Theorem 4.1. Let P = {x ∈ Rn : ai · x = bi ∀1 ≤ i ≤ k, vj · x ≤ cj ∀1 ≤ j ≤ m} such
that ai · vj = 0 for each 1 ≤ i ≤ k and 1 ≤ j ≤ m. Let θ ∈ P and dj(θ) , cj−vj ·θ

‖vj‖2
. Then

there exists an ellipsoid E(Σ, θ) ⊆ P such that Tr(Σ) ≥ minJ:|J|=n−k

{∑
j∈J dj(θ)2

}
.

Proof. Using the fact that E(Σ, θ) ⊆ P if and only the constraints in (Primal-SDP) are
satisfied (see Chapter 8, page 428 [8]), we obtain that it is enough to show that the objective
of the following semi-definite program is more than minJ:|J|=n−k

{∑
j∈J dj(θ)2

}
.

max Tr(Σ) (Primal-SDP)
s.t. 〈aiaTi ,Σ〉 = 0 ∀1 ≤ i ≤ k(

||vj ||22
)−1 〈vjvTj ,Σ〉 ≤

(
||vj ||22

)−1 (cj − vj · θ)2 = dj(θ)2 ∀1 ≤ j ≤ m
Σ � 0

Consider the dual of (Primal-SDP):

min
m∑
j=1

λjdj(θ)2 (Dual-SDP)

s.t.

k∑
i=1

µi
(
aiaTi

)
+

m∑
j=1

λj
(
||vj ||22

)−1 (vjvTj) � I
λj ≥ 0 ∀1 ≤ j ≤ m

By renaming the constraints assume, without loss of generality, that d1(θ) ≤ . . . ≤ dm(θ).
We will show that the dual objective value for any feasible dual solution (λ, µ) is at least∑n−k

j=1 dj(θ)2 which will prove the theorem.
For any 0 ≤ t ≤ m, consider the subspace St that is orthogonal to the vectors {ai}ki=1

and the vectors {vj}tj=1. Note that the dimension of St is at least n− k − t. Denote by Bt
the matrix whose columns form an orthonormal basis of St. Taking the inner product of the
dual constraint with BtBTt , we obtain that:

k∑
i=1

µi
(
BtB

T
t

)
·
(
aiaTi

)
+

m∑
j=1

λj
(
||vj ||22

)−1 (
BtB

T
t

)
·
(
vjvTj

)
≥
(
BtB

T
t

)
· I . (2)

Let us focus first on the l.h.s of (2). Note that for every 1 ≤ i ≤ k:(
BtB

T
t

)
·
(
aiaTi

)
= ‖BTt ai‖2

2
(i)= 0 .

Equality (i) is derived from the fact that the columns of Bt are orthogonal to {ai}ki=1.
Similarly, one can show that

(
BtB

T
t

)
·
(
vjvTj

)
= 0 for any 1 ≤ j ≤ t. Additionally, for any

t+ 1 ≤ j ≤ m, we have that:

(
BtB

T
t

)
·
(
vjvtj

)
= ‖BTt vj‖2

2
(ii)
≤ ‖vj‖2

2 .

Inequality (ii) follows since the columns of Bt form an orthonormal basis. Hence, we can
conclude that the l.h.s of (2) is upper bounded by

∑m
j=t+1 λj . Let us focus now on the r.h.s

of (2): (
BtB

T
t

)
· I = Tr(BtBTt) = Tr(BTt Bt)

(iii)
≥ n− k − t .

N. J. A. Harvey and R. Schwarz and M. Singh 7

Inequality (iii) is derived from the fact that the columns of Bt are an orthonormal basis of
dimension at least n− k − t. Thus, combining the upper bound on the l.h.s of (2) and lower
bound on the r.h.s of (2), we obtain that for each 0 ≤ t ≤ m:

m∑
j=t+1

λj ≥ n− k − t .

Our goal is to lower bound the value of any feasible solution for (Dual-SDP). This can
be done by considering the following linear program, whose variables are {λj}mj=1, and is a
relaxation of (Dual-SDP):

min
m∑
j=1

λjdj(θ)2

s.t.

m∑
j=t+1

λj ≥ n− k − t ∀0 ≤ t ≤ m

λj ≥ 0 ∀1 ≤ j ≤ m

Since (Dual-SDP) is a minimization problem, it suffices to lower bound the value of
an optimal solution. Recall that d1(θ) ≤ . . . ≤ dm(θ) and all the λjs are non-negative.
Therefore, the optimal solution to the above linear program is λj = 1 for each 1 ≤ j ≤ n− k
and λj = 0 for each j > n− k. Thus, we can conclude that

∑m
j=1 λjdj(θ)2 ≥

∑n−k
j=1 dj(θ)2

as claimed. J

Our analysis of Algorithm 1 actually requires the following corollary of Theorem 4.1. We
choose the polytope P to correspond to the requirements we mentioned in Section 3: given
a point θ, in addition to being contained in Pdisc(t), the ellipsoid should also be contained
in the subspace of all elements that are still active, i.e., {x ∈ Rn : xi = θi ∀i ∈ U \ Cact(θ)},
and the Euclidean unit sphere: Ball(θ, 1). The proof of the corollary appears in Appendix A.

I Corollary 4.2. For every t ≥ 0 and every θ ∈ P(t), there exists an ellipsoid

E(Σ, θ) ⊆ Pdisc(t) ∩
{

x ∈ Rn : xi = θi ∀i ∈ U \ Cact(θ)
}
∩ Ball(θ, 1)

that satisfies: Tr (Σ) ≥ minJ⊆{1,...,m}:|J|=|Cact(θ)|

{∑
j∈J min

{
1, dj(θ, t)2}}. Moreover, Σ

can be computed in polynomial time.

4.2 Phases
The analysis of Algorithm 1 is done in phases, each comprising of several consecutive iterations
of the algorithm. Denote the sequence of t values indicating the starting iteration of the ith
phase by τi, where τi = (b·i)/γ2 for some absolute constant b to be chosen later. Specifically,
the ith phase of Algorithm 1, where i = 0, 1, 2, . . ., corresponds to the following t values:

τi = b · i
γ2 ≤ t <

b · (i+ 1)
γ2 = τi+1 .

We require the notion of success, which is made formal in the following definition.
I Definition 1. Phase i is successful if at its end the algorithm has not aborted and:∣∣Cact (x (τi+1))

∣∣ ≤ 2−(i+1)n .

8 Discrepancy Without Partial Colorings

We also require that the absolute constants C, a and b satisfy the following three
conditions: a ≥ 8b, C ·

(
1− 2−b/(2a)

)
≥
√

32b, and b ≥ 64. It is important to note that these
conditions are sufficient for the correctness of Algorithm 1, but might not be necessary (they
were chosen for simplicity of presentation alone). The main lemma we prove is the following.

I Lemma 4.3. For every i, if phase i−1 is successful and γ ≤ b/n2, then phase i is successful
with probability of at least 1/4.

In order to prove Lemma 4.3 we start the analysis by showing that with overwhelming
probability Algorithm 1 never aborts. The following lemma states that in each iteration
there is an exponentially small probability of aborting. Its proof appears in the Appendix B.

I Lemma 4.4. For every iteration t ≥ 0: Pr [x(t+ 1) /∈ P(t+ 1)|x(t) ∈ P(t)] ≤ (2n + 1) ·(
1− Φ

(
(γ · n)−1

))
. Moreover, if τi ≤ t < τi+1, then the lemma holds also when conditioning

that phase i− 1 is successful.

Consider the following random subset:

A(t) , {j : dj (x(t), t) ≤ 1} .

The random subset A(t) consists of all discrepancy constraints j which are bad, as such
constraints are close to the location of Algorithm 1 at time t, i.e., x(t). Let us lower bound
the expected trace of the ellipsoid for every iteration t using A(t).

I Lemma 4.5. For every t ≥ 0: E
[
Tr
(
B(x(t), t)2)] ≥ E [|Cact(x(t))|]−E [|A(t)|]. Moreover,

if τi ≤ t < τi+1, then the lemma holds also when conditioning that phase i− 1 is successful.

Proof.

E
[
Tr
(
B (x(t), t)2

)] (i)
≥ E

 min
J⊆{1,...,m}:|J|=|Cact(x(t))|

∑
j∈J

min
{

1, dj(x(t), t)2}
 (3)

Inequality (i) is from Corollary 4.2. Let J∗(t) be the random subset achieving the min value
in the r.h.s of (3). Then,

E

 min
J⊆{1,...,m}:|J|=|Cact(x(t))|

∑
j∈J

min
{

1, dj(x(t), t)2}
 (4)

= E

 ∑
j∈J∗(t)

min
{

1, dj(x(t), t)2} ≥ E

 ∑
j∈J∗(t)\A(t)

min
{

1, dj(x(t), t)2}
(ii)
≥ E [|J∗(t) \A(t)|] ≥ E [|J∗(t)|]− E [|A(t)|]
(iii)= E

[∣∣Cact(x(t))
∣∣]− E [|A(t)|]

Inequality (ii) follows from the fact that if j /∈ A(t) then dj(x(t), t) ≥ 1 (by the definition of
A(t)). Equality (iii) is true since |J∗(t)| = |Cact(x(t))| by the definition of J∗(t). Note that
the exact same proof holds also when conditioning that phase i− 1 is successful. J

It is clear that one wishes that |A(t)| be as small as possible. The following lemma states
that for many of the iterations of phase i, the expected size of A(t) is indeed small enough.
Its proof appears in Appendix C.

N. J. A. Harvey and R. Schwarz and M. Singh 9

I Lemma 4.6. For every i ≥ 0 and iteration t, where τi + b/(2·γ2) ≤ t < τi+1, if phase i− 1
is successful then:

E [|A(t)|] ≤ 2 · 2−
1

8bC
2
(

1−2−b/(2a)
)2

·
(
2−i · n

)
.

We are now ready to prove the main Lemma.

Proof of Lemma 4.3. For simplicity of presentation, we omit in this proof the notations
indicating that all events and probabilities are conditioned on the event that phase i− 1 is
successful. First, let us bound the probability that Algorithm 1 does not abort during phase
i. Using union bound over all b/γ2 iterations in phase i and applying Lemma 4.4, one can
conclude that the probability of aborting during phase i is at most:

b

γ2 · (2n+ 1) ·
(

1− Φ
(

1
γ · n

))
.

Since γ ≤ b/n2, the application of standard gaussian tail bounds suffices to obtain a total
aborting probability of at most: e−n2 ≤ 1/4.

Second, let us prove that at the end of phase i: Pr
[
|Cact(x(τi+1))| > 2−(i+1) · n

]
< 1/2.

Note that this concludes the proof since one can apply a union bound over the latter event
and the event that Algorithm 1 did not abort during phase i, yielding a failure probability of
at most 3/4.

We now examine two cases, depending on the value of E [|Cact(x(τi+1))|]. If we are in the
case that E [|Cact(x(τi+1))|] ≤ 1/2 ·

(
2−(i+1) · n

)
then Markov’s inequality suffices. The reason

for latter is that we get: Pr
[
|Cact(x(τi+1))| > 2−(i+1) · n

]
< 1/2. Otherwise, let us assume

that we are in the case where E [|Cact(x(τi+1))|] > 1/2 ·
(
2−(i+1) · n

)
. Note that |Cact(x(t))|

is a monotone non-decreasing function in t, and therefore for every iteration t in phase i we
have that: E [|Cact(x(t))|] > 1/2 ·

(
2−(i+1) · n

)
. Let us examine now the expected change in

the Euclidean norm of x(t) during phase i.

E
[
||x(τi+1)− x(τi)||22

] (i)= γ2 · E

∣∣∣∣∣
∣∣∣∣∣
τi+1−1∑
t=τi

B(x(t), t) · g(t)

∣∣∣∣∣
∣∣∣∣∣
2

2

(ii)= γ2 · E

[
τi+1−1∑
t=τi

Tr
(
B(x(t), t)2)]

≥ γ2
τi+1−1∑

t=τi+b/(2·γ2)

E
[
Tr
(
B(x(t), t)2)]

(iii)
≥

τi+1−1∑
t=τi+b/(2·γ2)

(
E
[∣∣Cact(x(t))

∣∣]− E [|A(t)|]
)

(iv)
> γ2

τi+1−1∑
t=τi+b/(2·γ2)

1
4 − 2 · 2− 1

8

C2
(

1−2− b
2a

)2

b

 · (2−i · n)

= b

2 ·

1
4 − 2 · 2− 1

8

C2
(

1−2− b
2a

)2

b

 · (2−i · n)
(v)
≥ 4 ·

(
2−i · n

)

10 Discrepancy Without Partial Colorings

Equality (i) is by the definition of Algorithm 1. Note that equality (ii) follows from the fact
that all the g(t)s are independent random standard gaussian vectors. Specifically, it is easy
to show that for any matrix A, vector z and random gaussian vector g:

E
[
||z +Ag||22

]
= ||z||22 + Tr

(
A ·AT

)
.

Lemma 4.5 yields inequality (iii). Inequality (iv) is derived from Lemma 4.6 and the current
case assumption that E [|Cact(x(τi+1))|] > 1/2 ·

(
2−(i+1) · n

)
. Finally, inequality (v) follows

from the conditions on the constants.
Note that ||x(τi+1) − x(τi)||22 can never exceed 4 · |Cact(x(τi))|. This follows from the

following two. First, Corollary 4.2, specifically that

E
(
B(x(t), t)2,x(t)

)
⊆
{

z ∈ Rn : zi = xi(t) ∀i ∈ U \ Cact(x(t))
}
,

implies that all variables i that do not belong to Cact(x(t)) never change their value from
iteration t onwards. Second, phase i− 1 was successful, namely that |Cact(x(τi))| ≤ 2−i · n.
Since we proved that E

[
||x(τi+1)− x(τi)||22

]
> 4 · 2−i · n we got a contradiction. Thus, it

cannot happen that E [|Cact(x(τi+1))|] > 1/2 ·
(
2−(i+1) · n

)
and we conclude the proof. J

We are now ready to prove the main result, Theorem 3.1.

Proof of Theorem 3.1. Let us calculate the probability that all phases Algorithm 1 makes
are successful. First, denote by N the number of phases Algorithm 1 makes in case all phases
are successful, and by T the total number of iterations in case all phases are successful.
Definition 1 implies that N = O(logn), since |Cact(x(τi))| ≤ 2−i · n. Second, Lemma 4.3
provides, conditioned on the success of the previous phase and by choosing γ = b/n2, that
the success probability of the current phase is at least 1/4. Therefore, we can conclude that
the probability that all phases of Algorithm 1 are successful is at least (1/4)N = 1/poly(n).
Moreover, when all phases are successful the following two are implied:
1. Algorithm 1 never aborts (by Definition 1).
2. x(T) ∈ P(T). Since P(T) ⊆ P(∞), we can conclude that for every 1 ≤ j ≤ m:

∣∣1Sj · x(T)
∣∣ ≤ C ·√n · ln(2m

n

)
.

Note that the rounding step of Algorithm 1 (step 10) might incur only an additive loss of 1
in the discrepancy. This concludes the proof. J

Choosing Parameters: It suffices to choose: C = 27, a = 29 and b = 26 in order to satisfy
all the required conditions.

5 Conclusion and Open Problems

We devise the first algorithm for Spencer’s theorem that directly computes a coloring, without
recursively computing partial colorings. This naturally leads to several interesting questions.

Lovett-Meka [13] give a general condition (see Theorem 4 in [13]) when a partial coloring
is present. Indeed, our algorithm can also be shown to give a partial coloring under these
conditions. We defer the details to full version of the paper. A natural open question is
whether our algorithm can also yield a partial coloring under the more general geometric
condition as shown by Gluskin [12].

N. J. A. Harvey and R. Schwarz and M. Singh 11

Can this technique for directly producing full colorings be used to make progress on the
Beck-Fiala [6] conjecture? As a first step, can this approach give an algorithmic form of
Banaszczyk’s result [2]?
Although our algorithm does not directly produce partial colorings, our analysis involves
multiple phases, which are somewhat analogous to partial colorings. Can the analysis be
refined to avoid the notion of phases?

References
1 N. Alon and J. Spencer. The Probabilistic Method. John Wiley, 2000.
2 Wojciech Banaszczyk. Balancing vectors and Gaussian measures of n-dimensional convex

bodies. Random Structures & Algorithms, 12(4):351–360, 1998.
3 N. Bansal and J. Spencer. Deterministic discrepancy minimization. Algorithmica, 67(4):451–

471, 2013.
4 Nikhil Bansal. Constructive algorithms for discrepancy minimization. In Proceedings of the

51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 3–10.
IEEE, 2010.

5 Nikhil Bansal, Moses Charikar, Ravishankar Krishnaswamy, and Shi Li. Better algorithms
and hardness for broadcast scheduling via a discrepancy approach. In Proceedings of the
25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014.

6 József Beck and Tibor Fiala. “Integer-making” theorems. Discrete Applied Mathematics,
3(1):1–8, 1981.

7 József Beck and Vera T. Sós. Discrepancy theory. In R. Graham and M. Grötschel and L.
Lovász, editor, Handbook of Combinatorics, pages 1405–1446. Elsevier Science B.V., 1995.

8 Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

9 Bernard Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge
University Press, 2000.

10 Friedrich Eisenbrand, Dömötör Pálvölgyi, and Thomas Rothvoß. Bin packing via discrep-
ancy of permutations. ACM Transactions on Algorithms (TALG), 9(3):24, 2013.

11 Apostolos Giannopoulos. On some vector balancing problems. Studia Mathematica,
122(3):225–234, 1997.

12 Efim Davydovich Gluskin. Extremal properties of orthogonal parallelepipeds and their
applications to the geometry of Banach spaces. Mathematics of the USSR-Sbornik, 64(1):85,
1989.

13 Shachar Lovett and Raghu Meka. Constructive discrepancy minimization by walking on
the edges. In Proceedings of the 53rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 61–67. IEEE, 2012.

14 Jiří Matoušek. Geometric discrepancy: An illustrated guide, volume 18. Springer, 1999.
15 Thomas Rothvoß. Approximating bin packing within O(logOPT · log logOPT) bins. In

Proceedings of the 54th Annual Symposium on Foundations of Computer Science (FOCS),
pages 20–29. IEEE, 2013.

16 Thomas Rothvoss. Constructive discrepancy minimization for convex sets. arXiv preprint
arXiv:1404.0339, 2014.

17 Joel Spencer. Six standard deviations suffice. Transactions of the American Mathematical
Society, 289(2):679–706, 1985.

18 Aravind Srinivasan. Improving the discrepancy bound for sparse matrices: better ap-
proximations for sparse lattice approximation problems. In Proceedings of the 8th annual
ACM-SIAM Symposium on Discrete Algorithms, pages 692–701. Society for Industrial and
Applied Mathematics, 1997.

12 Discrepancy Without Partial Colorings

Appendix

A Proof of Corollary 4.2

Proof. The proof follows the same outline but differs slightly from the proof of Theorem 4.1.
First observe that the equality constraint for Pdisc(t) ∩ {x ∈ Rn : xi = θi ∀i ∈ U \ Cact(θ)}
are ei · x = θi for each i ∈ U \ Cact(θ). Now, we write the inequalities to make sure the
constraints are orthogonal to the equality constraint. Observe that 1Sj ·x ≤ cj(t) is equivalent
to the constraint 1Sact

j
(θ) · x ≤ cj(t) − 1S\Sact

j
(θ) · θ. Similarly, we have −1Sj · x ≤ cj(t) is

equivalent to the constraint −1Sact
j

(θ) · x ≤ cj(t) + 1S\Sact
j

(θ) · θ.
Thus, as in Theorem 4.1, we obtain that it is enough to show that the objective of the follow-

ing semi-definite program is more than minJ⊆{1,...,m}:|J|=|Cact(θ)|

{∑
j∈J min

{
1, dj(θ, t)2}} .

Here the constraint Σ � I follows from the fact E(Σ, θ) ⊆ Ball(θ, 1).

max Tr(Σ) (Primal-SDP2)
s.t. 〈eieTi ,Σ〉 = 0 ∀i ∈ U \ Cact(θ)

〈1Sact
j

(θ)1TSact
j

(θ),Σ〉

||1Sact
j

(θ)||22
≤
cj(t)− 1S\Sact

j
(θ) · θ − 1

Sactj(θ) · θ
||1

Sactj(θ) ||22
∀1 ≤ j ≤ m

〈1
Sactj(θ)1T

Sactj(θ) ,Σ〉
||1

Sactj(θ) ||22
≤
cj(t) + 1S\Sact

j
(θ) · θ + 1Sact

j
(θ) · θ

||1Sact
j

(θ)||22
∀1 ≤ j ≤ m

Σ � I
Σ � 0

Simplifying, we obtain that the SDP is equivalent to

max Tr(Σ) (Primal-SDP2)
s.t. 〈eieTi ,Σ〉 = 0 ∀i ∈ U \ Cact(θ)(

||1Sact
j

(θ)||22
)−1
〈1Sact

j
(θ)1TSact

j
(θ),Σ〉 ≤ dj(θ, t)

2 ∀1 ≤ j ≤ m

Σ � I
Σ � 0

Consider the dual of Primal-SDP2:

min
m∑
j=1

λjdj(θ)2 + Tr(V) (Dual-SDP2)

s.t.
∑

i∈U\Cact(θ)

µi
(
eieTi

)
+

m∑
j=1

λj
1

|Sact
j (θ)|

(
1Sact

j
(θ)1TSact

j
(θ)

)
� I − V

λj ≥ 0 ∀1 ≤ j ≤ m
V � 0

By renaming the constraints assume, without loss of generality, that d1(θ, t) ≤ . . . ≤
dm(θ, t) and r be the maximum value such that dr(θ, t) ≤ 1. Assume that r ≤ |Cact(θ)|, else

N. J. A. Harvey and R. Schwarz and M. Singh 13

the proof is identical to proof of Theorem 4.1. We will show that the dual objective value for
any feasible dual solution (λ, µ, V) is at least

∑r
j=1 dj(θ, t)2 + |Cact(θ)| − r which will prove

the theorem.

For any 0 ≤ t ≤ |Cact(θ)|, consider the subspace St that is orthogonal to the vectors
{ai}i∈U\Cact(θ) and the vectors {vj}tj=1. Note that the dimension of St is at least |Cact(θ)|− t.
Denote by Bt the matrix whose columns form an orthonormal basis of St. Taking the inner
product of the dual constraint with BtBTt , we obtain that:

BtB
T
t ·

 ∑
i∈U\Cact(θ)

µi
(
eieTi

)
+

m∑
j=1

λj
1

|Sact
j (θ)

(
1Sact

j
(θ)1TSact

j
(θ)

) � BtBTt · I −BtBTt · V .

(5)

As in proof of Theorem 4.1, we conclude that l.h.s is upper bounded by
∑m
j=t+1 λj . Let us

focus now on the r.h.s of (5):

(
BtB

T
t

)
· I −BtBTt · V ≥ Tr(BtBTt)− Tr(V) ≥ |Cact(θ)| − t− Tr(V) .

where we use the fact that BtBTt · V ≤ I · V = Tr(V). Thus, we obtain that for each
1 ≤ t ≤ m:

m∑
j=t+1

λj ≥ |Cact(θ)| − t− Tr(V) .

Consider the following linear program with variables λj for each 1 ≤ j ≤ m and variable
Tr(V) which is a relaxation of (Primal-SDP). Thus it enough to lower bound the value of
optimum solution to this linear program.

min
m∑
j=1

λjdj(θ)2 + Tr(V)

s.t.

m∑
j=t+1

λj ≥ |Cact(θ)| − t− Tr(V) . 0 ≤ t ≤ |Cact(θ)|

λj ≥ 0 ∀1 ≤ j ≤ m

Since d1(θ) ≤ . . . ≤ dm(θ) and all the λjs are non-negative and dj(θ) > 1 if j > r, the
optimal solution to the above linear program is λj = 1 for each 1 ≤ j ≤ r and λj = 0 for
each j > r and Tr(V) = |Cact(θ)| − r. Thus we can conclude that

∑m
j=1 λjdj(θ)2 + Tr(V) ≥∑r

j=1 dj(θ)2 + |Cact(θ)| − r ≥
∑|Cact(θ)|
j=1 min{1, dj(θ)2} as claimed. J

14 Discrepancy Without Partial Colorings

B Proof of Lemma 4.4

Proof.

Pr [x(t+ 1) /∈ P(t)|x(t) ∈ P(t)]
(i)= Pr [x(t) + γ ·B(x(t), t) · g(t) /∈ P(t)|x(t) ∈ P(t)]
(ii)
≤ Pr

[
x(t) + γ ·B(x(t), t) · g(t) /∈ E

(
B(x(t), t)2,x(t)

)
|x(t) ∈ P(t)

]
+

Pr [||x(t) + γ ·B(x(t), t) · g(t)||∞ > 1|x(t) ∈ P(t)]
= Pr

[
γ ·B(x(t), t) · g(t) /∈ E

(
B(x(t), t)2, 0

)
|x(t) ∈ P(t)

]
+

Pr [||x(t) + γ ·B(x(t), t) · g(t)||∞ > 1|x(t) ∈ P(t)]
= Pr

[
||g(t)||22 > 1/γ2

]
+

Pr
[
∃i ∈ Cact(x(t)) s.t. |xi(t) + γ · (B(x(t), t) · g(t))i| > 1|x(t) ∈ P(t)

]
(iii)
≤ Pr

[
||g(t)||22 > 1/γ2

]
+

Pr
[
∃i ∈ Cact(x(t)) s.t. γ · |(B(x(t), t) · g(t))i| > 1/n|x(t) ∈ P(t)

]
(iv)
≤ (2n+ 1) ·

(
1− Φ

(
1

γ · n

))
Equality (i) is from the definition of Algorithm 1. Inequality (ii) is derived from the definition
of P(t) and Corollary 4.2 since: E

(
B(x(t), t)2,x(t)

)
⊆ Pdisc(t). Inequality (iii) is derived

from the fact that i ∈ Cact(x(t)) implies that |xi(t)| < 1− 1/n. Finally, inequality (iv) is true
since |Cact(x(t))| ≤ n and since Corollary 4.2 implies that E

(
B(x(t), t)2,x(t)

)
⊆ Ball(x(t), 1).

The lemma now follows since P(t) ⊆ P(t+ 1). Note that the exact same proof holds also
when conditioning that phase i− 1 is successful. J

C Proof of Lemma 4.6

Proof. For simplicity, let us denote t = τi + s where b/(2γ2) ≤ s < b/γ2.

Pr [dj (x(t), t) ≤ 1] (i)= Pr
[
cj(t)−

∣∣1Sj · x(t)
∣∣

||1Sact
j

x(t)||2
≤ 1
]

= Pr
[
cj(t)− ||1Sact

j
(x(t))||2 ≤

∣∣1Sj · (x(t)− x(τi)) + 1Sj · x(τi)
∣∣]

(ii)
≤ Pr

[∣∣1Sj · (x(t)− x(τi))
∣∣ ≥ cj(t)− cj(τi)− ||1Sact

j
(x(t))||2

]
. (6)

Equality (i) is by the definition of dj(x(t), t). Inequality (ii) follows from the fact that phase
i−1 is successful, and in particular Algorithm 1 did not abort (implying that |x(τi)| ≤ cj(τi)).
Let us now lower bound the r.h.s of the event in (6). First,

cj(t)− cj(τi) = C ·
√
n · ln ((2m)/n) · 2− ba ·i ·

(
1− 2−

s·γ2
a

)
(iii)
≥ C ·

√
n · ln ((2m)/n) · 2− ba ·i ·

(
1− 2− b

2a

)
. (7)

Inequality (iii) is derived from the fact that we consider only iterations t in the second half
of phase i, i.e., b/(2γ2) ≤ s. Second,

||1Sact
j

(x(t))||2 ≤
√∣∣Sact

j (x(t))
∣∣ ≤√|Cact(x(t))|

(iv)
≤
√
|Cact(x(τi))|

(v)
≤ 2−i/2 ·

√
n . (8)

N. J. A. Harvey and R. Schwarz and M. Singh 15

Note that |Cact(x(t))| is a monotone non-increasing function in t, and thus inequality (iv)
follows. Since we assumed that phase i − 1 is successful, i.e., |Cact(x(τi))| ≤ 2−i · n (see
Definition 1), inequality (v) is true. Plugging (7) and (8) into the r.h.s of the event in (6)
yields:

cj(t)− cj(τi)− ||1Sact
j

(x(t))||2 ≥ C ·
√
n · ln ((2m)/n) · 2− ba ·i ·

(
1− 2− b

2a

)
− 2−i/2 ·

√
n

(vi)
≥
√
n · 2− ba ·i ·

(
C ·
√

ln ((2m)/n) ·
(

1− 2− b
2a

)
− 1
)

(vii)
≥
√
n · 2− ba ·i · C2 ·

√
ln ((2m)/n) ·

(
1− 2− b

2a

)
(9)

Inequalities (vi) and (vii) are both derived from the conditions we imposed on the constants.
Specifically, inequality (vi) follows from the condition that a ≥ 8b, whereas inequality (vii)
follows from the condition that C ·

(
1− 2−b/(2a)

)
≥
√

32b ≥ 4 (since b ≥ 64). Next, consider
the l.h.s of the event in (6). Note that by the definition of Algorithm 1:

x(t)− x(τi) = γ

τi+s∑
r=τi

B(x(r), r) · g(r) .

It can be verified that given the random choices of the algorithm in the first r − 1 iterations,
for any τi ≤ r ≤ τi + s, the random variable γ1Sj · (B(x(r), r) · g(r)) is a normal random
variable with mean 0 and standard deviation σ, where:

σ2 = γ21TSjB(x(r), r)21Sj
(viii)= γ21TSact

j
(x(r))B(x(r), r)21Sact

j
(x(r)) (10)

(ix)
≤ γ2 ∣∣Sact

j (x(r))
∣∣ (x)≤ γ2 · 2−in . (11)

Equality (viii) is derived from the property that

E(B(x(r), r)2,x(r)) ⊆
{

z ∈ Rn : zi = xi(r) ∀i ∈ U \ Cact(x(r))
}
,

as guaranteed by Corollary 4.2. Note that inequality (ix) follows again from Corollary 4.2,
specifically that B(x(r), r)2 � I (or equivalently that E(B(x(r), r)2,x(r)) ⊆ Ball(x(r), 1)).
Finally, recall that |Cact(x(r))| is a monotone non-increasing function in r. Therefore,
inequality (x) is true since we assume that phase i−1 was successful, i.e., |Cact(x(τi))| ≤ 2−i ·n

16 Discrepancy Without Partial Colorings

(see Definition 1). Applying the concentration bound of [4] for (6) results in:

Pr [dj(x(t), t) ≤ 1] ≤ Pr
[∣∣1Sj · (x(t)− x(τi))

∣∣ ≥ cj(t)− cj(τi)− ||1Sact
j

(x(t))||2
]

(xi)
≤ 2 · exp

−1
2 ·

n · 1
4 · C

2 · 2− 2b
a ·i ·

(
1− 2− b

2a

)2
· ln
(2m
n

)
(
γ · 2−i/2 ·

√
n
)2 · s

(xii)
≤ 2 · exp

−1
8 ·

C2 ·
(

1− 2− b
2a

)2

b
· 2(1− 2b

a)·i · ln
(

2m
n

)

= 2 ·
(n

2m

) 1
8 ·
C2·

(
1−2− b

2a

)2

b ·2(1− 2b
a)·i

(xiii)
≤ 2 ·

(n

2m

) 1
8 ·
C2·

(
1−2− b

2a

)2

b · 2−2(1− 2b
a)·i

(xiv)
≤ 2 ·

(n

2m

) 1
8 ·
C2·

(
1−2− b

2a

)2

b · 2−i

(xv)
≤ 2 · 2− 1

8 ·
C2·

(
1−2− b

2a

)2

b · n
m
· 2−i

Inequality (xi) is obtained by plugging into the tail bound of [4] inequalities (11) and (9)
for any τi ≤ r ≤ τi + s. Inequality (xii) follows since s ≤ b/γ2. Inequality (xiii) is derived
from the conditions on the constants, specifically that C ·

(
1− 2−b/(2a)

)
≥
√

32b, and the fact
that m ≥ n (and hence n/(2m) ≤ 1/2). Inequality (xiv) is derived again from the conditions
on the constants, specifically that a ≥ 8b, which implies that 2(1− 2b

a)·i ≥ i for every i ≥ 0.
Inequality (xv), similarly to (xiii), is derived from C ·

(
1− 2−b/(2a)

)
≥
√

32b. Linearity of
expectation concludes the proof since |S| = m. J

	Introduction
	Our Contribution

	Preliminaries
	Algorithm
	Analysis
	Geometric Core
	Phases

	Conclusion and Open Problems
	Proof of Corollary 4.2
	Proof of Lemma 4.4
	Proof of Lemma 4.6

